rifampin and fexofenadine

rifampin has been researched along with fexofenadine* in 7 studies

Trials

3 trial(s) available for rifampin and fexofenadine

ArticleYear
Effects of multiple-dose rifampicin 450 mg on the pharmacokinetics of fexofenadine enantiomers in Japanese volunteers.
    Journal of clinical pharmacy and therapeutics, 2015, Volume: 40, Issue:1

    Rifampicin is a potent inducer of P-glycoprotein (P-gp) and inhibitor of organic anion-transporting polypeptides (OATPs), with fexofenadine acting as a substrate for both mechanisms. Simultaneous administration of single- or multiple-dose rifampicin 600 mg significantly increases the concentrations of fexofenadine enantiomers by inhibiting OATP transporters. However, the effects of rifampicin 450 mg are unknown. Here, we evaluated the effects of multiple doses of rifampicin 450 mg on the pharmacokinetics of fexofenadine enantiomers in healthy Japanese volunteers.. In this randomized, two-phase, double-blind crossover study, 10 healthy volunteers received rifampicin 450 mg/day or placebo for 7 days. On day 7, fexofenadine 60 mg was co-administered simultaneously.. Rifampicin significantly increased the mean area under the plasma concentration-time curve (AUC) of (R)- and (S)-fexofenadine (3.10-fold and 3.48-fold, respectively) and decreased the renal clearance of (R)- and (S)-fexofenadine (0.40-fold and 0.47-fold, respectively), causing marked differences in the mean amounts of these enantiomers excreted into the urine in the rifampicin phase (P < 0.001). These results indicated that multiple doses of rifampicin 450 mg may be sufficient to inhibit the renal influx transporter and OATP-mediated hepatic uptake of both enantiomers. Moreover, these effects may be greater than the P-gp-inductive effects of rifampicin. Therefore, the interactive mechanism of multidose rifampicin may occur through a combination of OATP and P-gp transporters, thereby altering the pharmacokinetics of fexofenadine enantiomers.. In this study of rifampicin 450 mg, the interactive magnitude of the mean AUC values of fexofenadine enantiomers was higher than that observed in the previous study of rifampicin 600 mg, and no dose-dependent inhibitory effects of rifampicin were observed. These effects may be clinically significant in patients receiving fexofenadine and rifampicin.

    Topics: Anti-Allergic Agents; Area Under Curve; Cross-Over Studies; Cytochrome P-450 CYP2B6 Inducers; Dose-Response Relationship, Drug; Double-Blind Method; Drug Administration Schedule; Drug Interactions; Healthy Volunteers; Humans; Japan; Rifampin; Terfenadine

2015
Effect of coadministration of single and multiple doses of rifampicin on the pharmacokinetics of fexofenadine enantiomers in healthy subjects.
    Drug metabolism and disposition: the biological fate of chemicals, 2013, Volume: 41, Issue:1

    The effect of rifampicin on the pharmacokinetics of fexofenadine enantiomers was examined in healthy subjects who received fexofenadine alone or with single or multiple doses of rifampicin (600 mg). A single coadministered dose of rifampicin significantly decreased the oral clearance (CL(tot)/F) and renal clearance (CL(r)) of S- and R-fexofenadine by 76 and 62%, and 73 and 62%, respectively. Even after multiple doses, rifampicin significantly decreased these parameters, although the effect on the CL(tot)/F was slightly blunted. Multiple doses of rifampicin abolished the difference in the CL(tot)/F of fexofenadine enantiomers, whereas the stereoselectivity in the CL(r) persisted. Rifampicin inhibited the uptake of fexofenadine enantiomers by human hepatocytes via organic anion transporter (OAT) OATP1B3 and its basal-to-apical transport in Caco-2 cells, but not OAT3-mediated or multidrug and toxic compound extrusion 1 (MATE1)-mediated transport. The plasma-unbound fraction of S-fexofenadine was 1.8 times higher than that of R-fexofenadine. The rifampicin-sensitive uptake by hepatocytes was 1.6 times higher for R-fexofenadine, whereas the transport activities by OATP1B3, OAT3, MATE1, or P-glycoprotein were identical for both enantiomers. S-fexofenadine is a more potent human histamine H1 receptor antagonist than R-fexofenadine. In conclusion, rifampicin has multiple interaction sites with fexofenadine, all of which contribute to increasing the area under the curve of fexofenadine when they are given simultaneously, to surpass the effect of the induction of P-glycoprotein elicited by multiple doses.

    Topics: Adult; Aged; Female; Histamine H1 Antagonists, Non-Sedating; Humans; Male; Middle Aged; Organic Anion Transporters, Sodium-Independent; Organic Cation Transport Proteins; Reference Values; Rifampin; Terfenadine; Young Adult

2013
The effect of rifampin administration on the disposition of fexofenadine.
    Clinical pharmacology and therapeutics, 2001, Volume: 69, Issue:3

    Our objective was to assess the effect of rifampin (INN, rifampicin) on the pharmacokinetics of fexofenadine and to assess the influence of advanced age and sex.. Twelve young volunteers (6 men and 6 women; age range, 22 to 35 years) and twelve elderly volunteers (6 men and 6 women; age range, 65 to 76 years) received a 60-mg oral dose of fexofenadine before and after treatment with 600 mg of oral rifampin for 6 days. Blood and urine were collected for 48 hours and assayed for fexofenadine, azacyclonol, and rifampin by HPLC with either fluorescence or mass spectrometry detection.. All of the groups had a significant increase (P <.05) in the oral clearance of fexofenadine after rifampin treatment: young men, 2955 +/- 1516 versus 5524 +/- 3410 mL/min; young women, 2632 +/- 996 versus 7091 +/- 5,379 mL/min; elderly men, 1760 +/- 850 versus 4608 +/- 1159 mL/min; and elderly women, 2210 +/- 554 versus 4845 +/- 1600 mL/min. The peak serum concentration of fexofenadine was also significantly reduced (P <.05) by rifampin treatment: young men, 77 +/- 31 versus 52 +/- 17 ng/mL; young women, 72 +/- 19 versus 36 +/- 14 ng/mL; elderly men, 106 +/- 42 versus 52 +/- 14 ng/mL; elderly women, 76 +/- 23 versus 46 +/- 19 ng/mL. Half-life (150 to 230 minutes), time to maximum concentration (130 to 205 minutes), renal clearance (95 to 153 mL/min), and fraction unbound (2.9% to 3.7%) of fexofenadine showed no significant difference between control and treatment. The amount of azacyclonol, a CYP3A4 mediated metabolite of fexofenadine, eliminated renally increased on average 2-fold after rifampin dosing; however, this pathway accounted for less than 0.5% of the dose. No effect of age or sex on fexofenadine disposition or serum trough rifampin concentration (0.2 microg/mL to 1.8 microg/mL) was observed before or after rifampin treatment.. This study showed that rifampin effectively increased fexofenadine oral clearance and that this effect was independent of age and sex. We conclude that the cause of the increased oral clearance of fexofenadine is a reduced bioavailability caused by induction of intestinal P-glycoprotein.

    Topics: Administration, Oral; Adult; Aged; Aging; Analysis of Variance; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromatography, High Pressure Liquid; Drug Interactions; Enzyme Inhibitors; Female; Half-Life; Histamine H1 Antagonists; Humans; Male; Metabolic Clearance Rate; Rifampin; Sex Characteristics; Terfenadine

2001

Other Studies

4 other study(ies) available for rifampin and fexofenadine

ArticleYear
Using improved serial blood sampling method of mice to study pharmacokinetics and drug-drug interaction.
    Journal of pharmaceutical sciences, 2015, Volume: 104, Issue:3

    In pharmacokinetic evaluation of mice, using serial sampling methods rather than a terminal blood sampling method could reduce the number of animals needed and lead to more reliable data by excluding individual differences. In addition, using serial sampling methods can be valuable for evaluation of the drug-drug interaction (DDI) potential of drug candidates. In this study, we established an improved method for serially sampling the blood from one mouse by only one incision of the lateral tail vein, and investigated whether our method could be adapted to pharmacokinetic and DDI studies. After intravenous and oral administration of ibuprofen and fexofenadine (BCS class II and III), the plasma concentration and pharmacokinetic parameters were evaluated by our method and a terminal blood sampling method, with the result that both methods gave comparable results (ibuprofen: 63.8 ± 4.0% and 64.4%, fexofenadine: 6.5 ± 0.7% and 7.9%, respectively, in bioavailability). In addition, our method could be adapted to DDI study for cytochrome P450 and organic anion transporting polypeptide inhibition. These results demonstrate that our method can be useful for pharmacokinetic evaluation from the perspective of reliable data acquisition as well as easy handling and low stress to mice and improve the quality of pharmacokinetic and DDI studies.

    Topics: Administration, Intravenous; Administration, Oral; Animals; Antipyrine; Biological Availability; Blood Specimen Collection; Cytochrome P-450 Enzyme Inhibitors; Drug Interactions; Drug Monitoring; Ibuprofen; Male; Mice, Inbred C57BL; Models, Animal; Organic Anion Transporters; Pravastatin; Reproducibility of Results; Rifampin; Tail; Terfenadine; Triazoles; Veins

2015
Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs.
    The Journal of clinical investigation, 2010, Volume: 120, Issue:8

    Organic anion transporting polypeptides (OATPs) are uptake transporters for a broad range of endogenous compounds and xenobiotics. To investigate the physiologic and pharmacologic roles of OATPs of the 1A and 1B subfamilies, we generated mice lacking all established and predicted mouse Oatp1a/1b transporters (referred to as Slco1a/1b-/- mice, as SLCO genes encode OATPs). Slco1a/1b-/- mice were viable and fertile but exhibited markedly increased plasma levels of bilirubin conjugated to glucuronide and increased plasma levels of unconjugated bile acids. The unexpected conjugated hyperbilirubinemia indicates that Oatp1a/1b transporters normally mediate extensive hepatic reuptake of glucuronidated bilirubin. We therefore hypothesized that substantial sinusoidal secretion and subsequent Oatp1a/1b-mediated reuptake of glucuronidated compounds can occur in hepatocytes under physiologic conditions. This alters our perspective on normal liver functioning. Slco1a/1b-/- mice also showed drastically decreased hepatic uptake and consequently increased systemic exposure following i.v. or oral administration of the OATP substrate drugs methotrexate and fexofenadine. Importantly, intestinal absorption of oral methotrexate or fexofenadine was not affected in Slco1a/1b-/- mice. Further analysis showed that rifampicin was an effective and specific Oatp1a/1b inhibitor in controlling methotrexate pharmacokinetics. These data indicate that Oatp1a/1b transporters play an essential role in hepatic reuptake of conjugated bilirubin and uptake of unconjugated bile acids and drugs. Slco1a/1b-/- mice will provide excellent tools to study further the role of Oatp1a/1b transporters in physiology and drug disposition.

    Topics: Animals; Bile Acids and Salts; Bilirubin; Female; Liver; Liver-Specific Organic Anion Transporter 1; Male; Methotrexate; Mice; Mice, Knockout; Organic Anion Transport Protein 1; Organic Anion Transporters, Sodium-Independent; Rifampin; Terfenadine

2010
Liquid chromatography/tandem mass spectrometric bioanalysis using normal-phase columns with aqueous/organic mobile phases - a novel approach of eliminating evaporation and reconstitution steps in 96-well SPE.
    Rapid communications in mass spectrometry : RCM, 2002, Volume: 16, Issue:20

    Bioanalytical methods using automated 96-well solid-phase extraction (SPE) and liquid chromatography with electrospray tandem mass spectrometry (LC/MS/MS) are widely used in the pharmaceutical industry. SPE methods typically require manual steps of drying of the eluates and reconstituting of the analytes with a suitable injection solvent possessing elution strength weaker than the mobile phase. In this study, we demonstrated a novel approach of eliminating these two steps in 96-well SPE by using normal-phase LC/MS/MS methods with low aqueous/high organic mobile phases, which consisted of 70-95% organic solvent, 5-30% water, and small amount of volatile acid or buffer. While the commonly used SPE elution solvents (i.e. acetonitrile and methanol) have stronger elution strength than a mobile phase on reversed-phase chromatography, they are weaker elution solvents than a mobile phase for normal-phase LC/MS/MS and therefore can be injected directly. Analytical methods for a range of polar pharmaceutical compounds, namely, omeprazole, metoprolol, fexofenadine, pseudoephedrine as well as rifampin and its metabolite 25-desacetyl-rifampin, in biological fluids, were developed and optimized based on the foregoing principles. As a result of the time saving, a batch of 96 samples could be processed in one hour. These bioanalytical LC/MS/MS methods were validated according to "Guidance for Industry - Bioanalytical Method Validation" recommended by the Food and Drug Administration (FDA) of the United States.

    Topics: Adrenergic beta-Antagonists; Bronchodilator Agents; Chromatography, Liquid; Ephedrine; Histamine H1 Antagonists; Humans; Leprostatic Agents; Metoprolol; Pharmaceutical Preparations; Quality Control; Reproducibility of Results; Rifampin; Robotics; Solvents; Spectrometry, Mass, Electrospray Ionization; Terfenadine

2002
Induction of multidrug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampin.
    Drug metabolism and disposition: the biological fate of chemicals, 2002, Volume: 30, Issue:1

    Reverse transcription-polymerase chain reaction (RT-PCR) and quantitative, competitive RT-PCR were used to examine the capability of rifampin to induce the expression of mRNA derived from multidrug resistance-1 (MDR1) and drug-metabolizing cytochrome P450 (P450) genes in the mononuclear fraction (lymphocytes) of human blood. A total of 50 healthy volunteers (age, 18-74) participated in two studies in which 600 mg of rifampin was administered orally once daily in the evening for 7 days. Twenty of these individuals also received fexofenadine before and after rifampin dosing. MDR1 and CYP2C8 mRNAs were expressed in 100% (50 of 50) and 95% (35 of 37) of individuals, respectively, at baseline. A significant (P < 0.05; n = 37) increase in the expression of MDR1 mRNA from 176,900 +/- 122,000 to 248,500 +/- 162,300 molecules/microg of RNA was observed following rifampin administration in the human lymphocytes. There was no significant (P > 0.05) difference in MDR1 mRNA expression between males and females at baseline. Interestingly, 58% of the individuals (n = 29) demonstrated a 120% increase [95% confidence interval (CI); 120%; range, 81-153%; responders] in MDR1 mRNA expression. In contrast, the remaining 42% of individuals (n = 21) exhibited a mean decrease of -5.2% (95% CI; -5.2%; range, -15 to +4%; nonresponders). Rifampin steady-state trough serum concentrations were not significantly different (P > 0.05) between responders and nonresponders. Likewise, there was no relationship between the observed induction in MDR1 mRNA expression in lymphocytes and the observed increase in fexofenadine oral clearance in twenty volunteers. The mRNA of CYP2E1, CYP3A5, CYP3A7, CYP4A11, and CYP4B1 genes were variably expressed at baseline and following rifampin treatment. In contrast, CYP2C9 and CYP3A4 mRNAs were undetectable in lymphocytes both before and after rifampin dosing. Interindividual variability in baseline expression and inducibility of MDR1 and P450 mRNA in human lymphocytes appeared to be substantial and may not reflect the expression of these enzymes in other tissues.

    Topics: Adolescent; Adult; Aged; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cytochrome P-450 Enzyme System; Drug Interactions; Enzyme Induction; Female; Humans; Lymphocytes; Male; Middle Aged; Reverse Transcriptase Polymerase Chain Reaction; Rifampin; RNA, Messenger; Terfenadine

2002