rhodostomin has been researched along with arginyl-glycyl-aspartyl-serine* in 2 studies
2 other study(ies) available for rhodostomin and arginyl-glycyl-aspartyl-serine
Article | Year |
---|---|
Rhodostomin inhibits the transforming growth factor-beta1-enhanced adhesion activity of ROS 17/2.8 osteosarcoma cells.
We have investigated the effect of transforming growth factor-beta1 (TGF-beta1) on the in vitro adhesion activity of the rat osteosarcoma cell lines (ROS 17/2.8) to extracellular matrix substrata, including fibronectin, type I and IV collagen, as well as laminin. The interaction of Arg-Gly-Asp (RGD) and rhodostomin, an RGD containing snake venom, with TGF-beta1 on the cell adhesion was also evaluated. The results showed that incubation with various concentration of TGF-beta1 (1-15 ng/ml) significantly increased the adhesion activity (1.4 to 2.5 folds) of ROS 17/2.8 to fibronectin and type I collagen (p<0.01), whereas the adhesion activity to laminin and type IV collagen was slightly elevated (1.1 to 1.5 folds). The peak effect of TGF-beta1 on the cell adhesion occurred after pretreatment of ROS 17/2.8 with TGF-beta1 for 6 hours. Treatment with Arg-Gly-Asp-Ser (RGDS) and rhodostomin effectively suppressed the TGF-beta1-enhanced adhesion activity to fibronectin and type I collagen. This study demonstrated that the up-regulated cell adhesion activity of ROS 17/2.8 cells by the TGF-beta1 can be inhibited by the rhodostomin. Topics: Animals; Cell Adhesion; Extracellular Matrix; Oligopeptides; Osteosarcoma; Peptides; Rats; Transforming Growth Factor beta; Transforming Growth Factor beta1; Tumor Cells, Cultured | 2000 |
Thrombin enhances the adhesion and migration of human colon adenocarcinoma cells via increased beta 3-integrin expression on the tumour cell surface and their inhibition by the snake venom peptide, rhodostomin.
The interactions between tumour cells and the microvasculature, including the adhesion of tumour cells to endothelium and extracellular matrix (ECM) as well as their migratory ability, are prerequisites for metastasis to occur. In this study we showed that thrombin is capable of enhancing in vitro tumour cell metastatic potential in terms of adhesive properties and migratory response. Following exposure to subclotting concentrations of thrombin, SW-480 human colon adenocarcinoma cells exhibited increased adhesion to both the endothelium and ECM component (i.e. fibronectin). Likewise, the pretreatment of thrombin enhanced the migratory ability of SW-480 cells. The enhanced adhesion was significantly inhibited by complexing of thrombin with its inhibitor hirudin, or by serine proteinase inhibition with 3,4-DCI, but was unaffected by pretreatment of tumour cells with actinomycin D or cycloheximide. The effect of thrombin resulted in an upregulated cell-surface expression of beta 3 integrins, a group of receptors mediating interactions between tumour cells and endothelial cells, and between tumour cells and ECM. Antibodies against beta 3 integrins effectively blocked both the enhanced adhesion and migration. This thrombin-mediated up-regulation of beta 3 integrins involved the activation of protein kinase C (PKC) as thrombin-enhanced adhesion was diminished by PKC inhibition. Rhodostomin, an Arg-Gly-Asp-containing antiplatelet snake venom peptide that antagonises the binding of ECM toward beta 3 integrins on SW-480 cells, was about 600 and 500 times, more potent that RGDS in inhibiting thrombin-enhanced adhesion and migration respectively. Our data suggest that PKC inhibitors as well as rhodostomin may serve as inhibitory agents in the prevention of thrombin-enhanced metastasis. Topics: Adenocarcinoma; Amino Acid Sequence; Antibodies, Monoclonal; Antigens, CD; Cell Adhesion; Cell Movement; Colonic Neoplasms; Endothelium, Vascular; Enzyme Inhibitors; Fibronectins; Humans; Integrin beta3; Molecular Sequence Data; Oligopeptides; Peptides; Platelet Aggregation Inhibitors; Platelet Membrane Glycoproteins; Protein Kinase C; Thrombin; Tumor Cells, Cultured | 1996 |