rhodopin and spirilloxanthin

rhodopin has been researched along with spirilloxanthin* in 4 studies

Other Studies

4 other study(ies) available for rhodopin and spirilloxanthin

ArticleYear
Effect of Illumination Intensity and Inhibition of Carotenoid Biosynthesis on Assembly of Peripheral Light-Gathering Complexes in Purple Sulfur Bacteria C Allochromatium vinosum ATCC 17899.
    Mikrobiologiia, 2016, Volume: 85, Issue:4

    Effect of illumination intensity and inhibition of carotenoid biosynthesis on assemblage of different spectral types of LH2 complexes in a purple sulfur bacterium Allochromatium (Alc.) vinosum ATCC 17899 was studied. Under illumination of 1200 and 500 lx, the complexes B800-850 and B800-840 and B800-820 were assembled. While rhodopine was the major carotenoid in all spectral types of the LH2 complex, a certain- increase in the content of carotenoids with higher numbers of conjugated double bonds (anhydrorhodovibrin and didehydrorhodovibrin) was observed in the B800-820 complex. At 1200 lx, the cells grew slowly at diphe- nylamine (DPA) concentrations not exceeding 53 .iM, while at illumination intensity decreased to 500 Ix they could grow at 71 jiM DPA (DPA cells). Independent on illumination level, the inhibitor is supposed to impair the functioning of phytoine synthetase (resulting in a decrease in the total carotenoid content) and of phyto- ine desturase, which results in formation of neurosporene hydroxy derivatives and ;-carotene. In the cells grown at 500 lx, small amounts of spheroidene and.OH-spheroidene were detected. These carotenoids were originally found under conditions of carotenoid synthesis inhibition in bacteria with spirilloxanthin as the major carotenoid. Carotenoid content in the LH2 complexes isolated from the DPA cells was -15% of the control (without inhibition) for the B800-850 and -20%of the control for the B800-820 and B800-840 DPA complexes. Compared to the DPA pigment-containing membranes, the DPA complexes were enriched with -carotenoids due to- disintegration of some carotenoid-free complexes in the course of isolation. These results support the supposition that some of the B800-820, B800-840, and B800-850 complexes may be Assembled in the cells of Alc. vinosum ATCC 17899 without carotenoids. Comparison of the characteristics obtained for Alc. vinosum ATCC 17899 and the literature data on strain D of the same bacteria shows that they belong to two different strains, rather than to one as was previously supposed.

    Topics: Bacterial Proteins; Carotenoids; Chromatiaceae; Culture Media; Diphenylamine; Dose-Response Relationship, Radiation; Gene Expression; Ligases; Light; Light-Harvesting Protein Complexes; Mixed Function Oxygenases; Xanthophylls; zeta Carotene

2016
Distribution of rhodopin and spirilloxanthin between LH1 and LH2 complexes when incorporating carotenoid mixture into the membrane of purple sulfur bacterium Allochromatium minutissimum in vitro.
    Doklady. Biochemistry and biophysics, 2016, Volume: 471, Issue:1

    Carotenoid mixture enriched by rhodopin and spirilloxanthin was incorporated in LH2 and LH1 complexes from Allochromatium (Alc.) minutissimum in vitro. The maximum incorporating level was ~95%. Rhodopin (56.4%) and spirilloxanthin (13.8%) were incorporated into the LH1 complex, in contrast to the control complex, which contained primarily spirilloxanthin (66.8%). After incorporating, the LH2 complex contained rhodopin (66.7%) and didehydrorhodopin (14.6%), which was close to their content in the control (67.4 and 20.5%, respectively). Thus, it was shown that carotenoids from the total pool are not selectively incorporated into LH2 and LH1 complexes in vitro in the proportion corresponding to the carotenoid content in the complexes in vivo.

    Topics: Bacterial Proteins; Carotenoids; Cell Membrane; Chromatiaceae; Chromatography, High Pressure Liquid; Light-Harvesting Protein Complexes; Spectrum Analysis; Xanthophylls

2016
Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum.
    Photosynthesis research, 2011, Volume: 110, Issue:1

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl.

    Topics: Bacteriochlorophylls; Carotenoids; Chromatiaceae; Cold Temperature; Energy Transfer; Kinetics; Light; Light-Harvesting Protein Complexes; Photosynthesis; Spectrometry, Fluorescence; Temperature; Time Factors; Xanthophylls

2011
A null lesion in the rhodopin 3,4-desaturase of Rhodospirillum rubrum unmasks a cryptic branch of the carotenoid biosynthetic pathway.
    Biochemistry, 1998, Jun-23, Volume: 37, Issue:25

    The carotenoids accumulated by a mutant Rhodospirillum rubrum ST4, containing a single Tn5 lesion in the pathway for carotenoid biosynthesis, were analyzed by HPLC, 1H NMR spectroscopy, and field desorption mass spectrometry. The main carotenoid was identified as 3,4,3',4'-tetrahydrospirilloxanthin, and the four minor carotenoids were identified as rhodopin, 3,4-dihydroanhydrorhodovibrin, 3', 4'-dihydrorhodovibrin, and 1,1'-dihydroxylycopene. The C-3,4 and C-3',4' bonds of all 5 carotenoids are saturated, and they have 11 conjugated double bonds. With the exception of rhodopin, which is a normal intermediate of the wild-type pathway, all of the carotenoids are not naturally occurring. The Tn5 lesion was assigned to rhodopin 3,4-desaturase which is proposed to catalyze dehydrogenation at both ends of the symmetrical spirilloxanthin derivative. An unexpected finding was that the enzymes following rhodopin 3,4-desaturase are still able to end-modify the 3,4-, and 3',4'-saturated precursors and that the order of methylation and hydroxylation is not obligatory. It is proposed that the observed nonnatural carotenoids can be explained by the inclusion of a cryptic branch, unmasked by the absence of rhodopin 3,4-desaturase, in the established linear pathway for spirilloxanthin biosynthesis. This is the first example of latent branching of the carotenoid biosynthesis pathway exhibited by a carotenoid mutant of a phototrophic bacterium.

    Topics: Carotenoids; Mutagenesis; Oxidoreductases; Phenotype; Rhodospirillum rubrum; Substrate Specificity; Xanthophylls

1998