retinol-palmitate has been researched along with methyl-linoleate* in 2 studies
2 other study(ies) available for retinol-palmitate and methyl-linoleate
Article | Year |
---|---|
UVA photoirradiation of retinyl palmitate--formation of singlet oxygen and superoxide, and their role in induction of lipid peroxidation.
We have previously reported that photoirradiation of retinyl palmitate (RP) in ethanol with UVA light results in the formation of photodecomposition products, including 5,6-epoxy-RP and anhydroretinol (AR). Photoirradiation in the presence of a lipid, methyl linoleate, induced lipid peroxidation, suggesting that reactive oxygen species (ROS) are formed. In the present study, we employ an electron spin resonance (ESR) spin trap technique to provide direct evidence as to whether or not photoirradiation of RP by UVA light produces ROS. Photoirradiation of RP by UVA in the presence of 2,2,6,6-tetramethylpiperidine (TEMP), a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. Both 5,5-dimethyl N-oxide pyrroline (DMPO) and 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) are specific probes for superoxide. When photoirradiation of RP was conducted in the presence of the DMPO or BMPO, ESR signals for DMPO-*OOH or BMPO-*OOH were obtained. These results unambiguously confirmed the formation of superoxide radical anion. Consistent with a free radical mechanism, there was a near complete and time-dependent photodecomposition of RP and its photodecomposition products. ESR studies on the photoirradiation of 5,6-epoxy-RP and AR indicate that these compounds exhibit similar photosensitizing activities as RP under UVA light. Topics: Antioxidants; Diterpenes; Electron Spin Resonance Spectroscopy; Linoleic Acids; Lipid Peroxidation; Retinyl Esters; Singlet Oxygen; Superoxides; Ultraviolet Rays; Vitamin A | 2006 |
Photoirradiation of retinyl palmitate in ethanol with ultraviolet light--formation of photodecomposition products, reactive oxygen species, and lipid peroxides.
We have previously reported that photoirradiation of retinyl palmitate (RP), a storage and ester form of vitamin A (retinol), with UVA light resulted in the formation of photodecomposition products, generation of reactive oxygen species, and induction of lipid peroxidation. In this paper, we report our results following the photoirradiation of RP in ethanol by an UV lamp with approximately equal UVA and UVB light. The photodecomposition products were separated by reversed-phase HPLC and characterized spectroscopically by comparison with authentic standards. The identified products include: 4-keto-RP, 11-ethoxy-12-hydroxy-RP, 13-ethoxy-14-hydroxy-RP, anhydroretinol (AR), and trans- and cis-15-ethoxy-AR. Photoirradiation of RP in the presence of a lipid, methyl linoleate, resulted in induction of lipid peroxidation. Lipid peroxidation was inhibited when sodium azide was present during photoirradiation which suggests free radicals were formed. Our results demonstrate that, similar to irradiation with UVA light, RP can act as a photosensitizer leading to free radical formation and induction of lipid peroxidation following irradiation with UVB light. Topics: Deuterium Oxide; Diterpenes; Ethanol; Linoleic Acids; Lipid Peroxidation; Reactive Oxygen Species; Retinyl Esters; Sodium Azide; Ultraviolet Rays; Vitamin A | 2006 |