retinaldehyde and chapso

retinaldehyde has been researched along with chapso* in 4 studies

Other Studies

4 other study(ies) available for retinaldehyde and chapso

ArticleYear
The effect of lipid environment and retinoids on the ATPase activity of ABCR, the photoreceptor ABC transporter responsible for Stargardt macular dystrophy.
    The Journal of biological chemistry, 2000, Jul-07, Volume: 275, Issue:27

    ABCR is a photoreceptor-specific ATP-binding cassette transporter that has been linked to various retinal diseases, including Stargardt macular dystrophy, and implicated in retinal transport across rod outer segment (ROS) membranes. We have examined the ATPase and GTPase activity of detergent-solubilized and reconstituted ABCR. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonic acid-solubilized ABCR had ATPase and GTPase activity (K(m) approximately 75 micrometer V(max) approximately 200 nmol/min/mg) that was stimulated 1.5-2-fold by all-trans-retinal and dependent on phospholipid and dithiothreitol. The K(m) for ATP decreased to approximately 25 micrometer after reconstitution, whereas the V(max) was strongly dependent on the lipid used for reconstitution. ABCR reconstituted in ROS phospholipid had a V(max) for basal and retinal activated ATPase activity that was 4-6 times higher than for ABCR in soybean or brain phospholipid. This enhanced activity was mainly due to the high phosphatidylethanolamine (PE) content of ROS membranes. PE was also required for retinoid-stimulated ATPase activity. ATPase activity of ABCR was stimulated by the addition of N-retinylidene-PE but not the reduced derivative, retinyl-PE. ABCR expressed in COS-1 cells also exhibited retinal-stimulated ATPase activity similar to that of the native protein. These results support the view that ABCR is an active retinoid transporter, the nucleotidase activity of which is strongly influenced by its lipid environment.

    Topics: Adenosine Triphosphatases; Animals; ATP-Binding Cassette Transporters; Cattle; Cholic Acids; COS Cells; Enzyme Activation; GTP Phosphohydrolases; Humans; Kinetics; Lipids; Phospholipids; Proteolipids; Retinaldehyde; Retinitis Pigmentosa; Retinoids; Rod Cell Outer Segment; Transfection; Vitamin A

2000
Unbleachable rhodopsin with an 11-cis-locked eight-membered ring retinal: the visual transduction process.
    Biochemistry, 1994, Jan-18, Volume: 33, Issue:2

    Visual transduction occurs through photorhodopsin, the primary photoproduct of rhodopsin, which relaxes to bathorhodopsin and a series of other intermediates until it reaches the metarhodopsin II stage, upon which the enzymatic cascade leading to vision is activated. Despite advances in areas related to visual transduction, the triggering process itself, a key problem in the chemistry of rhodopsin, has remained unsolved. In order to clarify the extent of involvement of the chromophoric excited state versus the 11-cis to trans isomerization, and as an extension of past studies with 11-cis-locked seven-membered ring rhodopsin (Rh7), 11-cis eight- and nine-membered ring retinal analogs, ret8 and ret9, respectively, have been synthesized. The bulkiness of the tetramethylene bridge in ret8 led to numerous unexpected obstacles in attempts to reconstitute a ret8-containing rhodopsin (Rh8) embedded in lipid bilayer membranes. These obstacles were solved by using methylated rhodopsin which gave MeRh8 containing 11-cis-ret8 as its chromophore. MeRh8 exhibited UV-vis and CD spectra very similar to those of native rhodopsin (Rh); furthermore, the quantum efficiency of photorhodopsin formation was comparable to that of Rh.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Cattle; Cholic Acids; Circular Dichroism; Detergents; Drug Stability; Hot Temperature; Hydroxylamine; Hydroxylamines; Methylation; Photolysis; Retinaldehyde; Rhodopsin; Rod Cell Outer Segment; Rod Opsins; Signal Transduction; Spectrophotometry; Vision, Ocular

1994
Quantum yield of CHAPSO-solubilized rhodopsin and 3-hydroxy retinal containing bovine opsin.
    Photochemistry and photobiology, 1991, Volume: 54, Issue:6

    The quantum yields of bleaching for two artificial pigments, bovine opsin combined with (3R)-3-hydroxy retinal or (3R,S)-3-methoxy retinal, were determined in comparison to the value for regenerated bovine rhodopsin. Regeneration of the visual pigments was performed by incubation of 3-[(3-Cholamidopropyl)-dimethylammonio]-2-hydroxy-1- propanesulfonate (CHAPSO)-solubilized opsin with the 11-cis isomers of retinal and the respective retinal derivatives. The extinction coefficients of the pigments in CHAPSO were determined to 35,000 M-1 cm-1 (native rhodopsin), 35,300 M-1 cm-1 (regenerated rhodopsin) and 34,500 M-1 cm-1 (3-OH retinal opsin). With respect to rhodopsin (lambda max: 500 nm), the pigments carrying the substituted chromophores exhibit blue shifted absorbance maxima (3-hydroxy and 3-methoxy retinal opsin: 488 nm). In parallel experiments under absolutely identical conditions we find related to the value of CHAPSO solubilized rhodopsin (identical to 1) a quantum efficiency of bleaching for the 3-hydroxy pigment of 1.2.

    Topics: Animals; Cattle; Cholic Acids; Detergents; Eye Proteins; Quantum Theory; Retinaldehyde; Rhodopsin; Rod Cell Outer Segment; Rod Opsins; Solubility; Spectrophotometry

1991
Purification of bacteriorhodopsin and characterization of mature and partially processed forms.
    The Journal of biological chemistry, 1989, May-05, Volume: 264, Issue:13

    Bacteriorhodopsin (BR) essentially free of native lipids has been prepared in a highly stable state. Purple membrane was solubilized in Triton X-100 and BR was purified by size exclusion chromatography using 3-[cholamidopropyl)dimethylammonio]-2-hydroxyl-1-propanesulfonic acid (CHAPSO) detergent at pH 5. Molar ratios of phospholipid/BR ranged from 0.4 to 0.05 corresponding to 94-98% phospholipid removal. Purified BR has an absorbance ratio (A280nm/A548nm) of 1.5-1.6 in the dark-adapted state which is the highest purified BR/protein ratio reported to date. The purified BR in CHAPSO shows maximum stability in the pH range 5.0-5.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of native purple membrane and solubilized BR from most Halobacterium halobium JW-3 cultures show 3 higher molecular weight bands in addition to BR. Immunological staining and amino acid sequencing indicates that these additional proteins are partially processed forms of the BR precursor protein. The BR preprotein contains 13 additional amino acids on the NH2 terminus which are removed by post-translational processing in at least four steps. Isoelectric focusing separated most delipidated and non-delipidated BR samples into 8 bands. Incomplete BR post-translational processing BR is thought to be largely responsible for the multiplicity of isoelectric BR species. The principal components have pI values of 5.20 and 5.24 and both have absorption maxima at 550 nm, characteristic of detergent-solubilized BR. BR in Triton X-100 or nonylglucoside, delipidated BR in CHAPSO, and BR in intact purple membrane all have a dark-adapted ratio of 13-cis to all-trans-retinal of 1.9:1.

    Topics: Bacteriorhodopsins; Blotting, Western; Cholic Acids; Detergents; Halobacterium; Hydrogen-Ion Concentration; Isoelectric Point; Micelles; Molecular Weight; Protein Processing, Post-Translational; Retinaldehyde; Solubility

1989