Page last updated: 2024-08-16

resveratrol and tacrine

resveratrol has been researched along with tacrine in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (20.00)29.6817
2010's5 (50.00)24.3611
2020's3 (30.00)2.80

Authors

AuthorsStudies
Dansette, PM; Fontana, E; Poli, SM1
Andrisano, V; Barril, X; Bartolini, M; Carreiras, Mdo C; de los Ríos, C; García, AG; Huertas, O; León, R; López, B; López, MG; Luque, FJ; Marco-Contelles, J; Rodríguez-Franco, MI; Samadi, A; Villarroya, M1
Kong, LY; Li, F; Li, XM; Wang, J; Wang, XB; Wang, ZM; Wu, JJ1
Bartolini, M; Bolognesi, ML; Guidotti, L; Hrabinova, M; Jeřábek, J; Korábečný, J; Kuča, K; Monti, B; Peña-Altamira, LE; Petralla, S; Roberti, M; Sepsova, V; Soukup, O; Uliassi, E1
Guo, QL; Huang, SL; Huang, ZS; Li, D; Liu, ZQ; Ou, TM; Tan, JH; Wang, HG; Wang, N; Wu, JQ; Xia, CL1
Brazzolotto, X; Colletier, JP; Coquelle, N; Gobec, S; Jukič, M; Knez, D; Kos, J; Mravljak, J; Nachon, F; Pišlar, A; Sova, M; Žakelj, S1
Fang, Y; Gu, Q; Xu, J; Zhou, H1
Du, H; Jiang, X; Liu, S; Ma, F; Ma, M; Xu, H1
Chen, S; Du, J; Li, R; Li, Z; Liu, T; Xing, S1
Amoroso, R; Carradori, S; De Filippis, B; Fantacuzzi, M1

Reviews

2 review(s) available for resveratrol and tacrine

ArticleYear
Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity.
    Current drug metabolism, 2005, Volume: 6, Issue:5

    Topics: Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Interactions; Enzyme Inhibitors; Humans; Isoenzymes; Structure-Activity Relationship; Terminology as Topic

2005
Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy.
    European journal of medicinal chemistry, 2022, Apr-05, Volume: 233

    Topics: Humans; Neurodegenerative Diseases; Polyphenols; Resveratrol; Stilbenes; Structure-Activity Relationship

2022

Other Studies

8 other study(ies) available for resveratrol and tacrine

ArticleYear
Tacripyrines, the first tacrine-dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer's disease.
    Journal of medicinal chemistry, 2009, May-14, Volume: 52, Issue:9

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Blood-Brain Barrier; Butyrylcholinesterase; Calcium; Calcium Channel Blockers; Catalytic Domain; Cell Death; Cell Line, Tumor; Cholinesterase Inhibitors; Cytosol; Dihydropyridines; Humans; Hydrogen Peroxide; Kinetics; Ligands; Models, Molecular; Peptide Fragments; Permeability; Tacrine

2009
Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer's disease based on the fusion of donepezil and melatonin.
    Bioorganic & medicinal chemistry, 2016, 09-15, Volume: 24, Issue:18

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Blood-Brain Barrier; Butyrylcholinesterase; Catalytic Domain; Cell Line, Tumor; Chelating Agents; Cholinesterase Inhibitors; Donepezil; Electrophorus; Horses; Humans; Indans; Indoles; Iron; Kinetics; Melatonin; Molecular Docking Simulation; Peptide Fragments; Piperidines; Protein Multimerization; Rats; Zinc

2016
Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer's disease.
    European journal of medicinal chemistry, 2017, Feb-15, Volume: 127

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Humans; Ligands; Liver; Molecular Targeted Therapy; Neuroprotective Agents; Peptide Fragments; Protein Aggregates; Rats; Resveratrol; Stilbenes; Tacrine

2017
Design, synthesis and evaluation of 2-arylethenyl-N-methylquinolinium derivatives as effective multifunctional agents for Alzheimer's disease treatment.
    European journal of medicinal chemistry, 2017, Apr-21, Volume: 130

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Blood-Brain Barrier; Cell Death; Cell Line; Cholinesterase Inhibitors; Drug Design; Glutathione; Humans; Quinolines; Reactive Oxygen Species

2017
Multi-target-directed ligands for treating Alzheimer's disease: Butyrylcholinesterase inhibitors displaying antioxidant and neuroprotective activities.
    European journal of medicinal chemistry, 2018, Aug-05, Volume: 156

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Butyrylcholinesterase; Caco-2 Cells; Cell Line, Tumor; Cholinesterase Inhibitors; Drug Design; Humans; Ligands; Models, Molecular; Neuroprotective Agents; Piperidines

2018
Synthesis and evaluation of tetrahydroisoquinoline-benzimidazole hybrids as multifunctional agents for the treatment of Alzheimer's disease.
    European journal of medicinal chemistry, 2019, Apr-01, Volume: 167

    Topics: Alzheimer Disease; Amyloid Precursor Protein Secretases; Animals; Aspartic Acid Endopeptidases; Benzimidazoles; Cell Line; Cell Membrane Permeability; Drug Design; Glutathione; Humans; Inflammation; Mice; Neuroprotective Agents; Reactive Oxygen Species; Tetrahydroisoquinolines

2019
Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation.
    Bioorganic & medicinal chemistry letters, 2020, 12-15, Volume: 30, Issue:24

    Topics: Acetylcholinesterase; Alkaloids; Alzheimer Disease; Amyloid beta-Peptides; Carbolines; Cell Line; Cholinesterase Inhibitors; Humans; Molecular Docking Simulation; Peptide Fragments; Protein Aggregates; Protein Aggregation, Pathological

2020
Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer's disease.
    European journal of medicinal chemistry, 2022, Jan-05, Volume: 227

    Topics: Acetamides; Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Biphenyl Compounds; Butyrylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Drug Design; Humans; Molecular Structure; Neuroprotective Agents; Oxadiazoles; Picrates; Protein Aggregates; Structure-Activity Relationship

2022