Page last updated: 2024-08-16

resveratrol and quercetin 3-o-glucopyranoside

resveratrol has been researched along with quercetin 3-o-glucopyranoside in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (33.33)29.6817
2010's3 (50.00)24.3611
2020's1 (16.67)2.80

Authors

AuthorsStudies
Backlund, A; Bohlin, L; Gottfries, J; Larsson, J1
Jin, C; Kim, EJ; Kim, HJ; Lee, YS; Seo, SH; Shin, CG1
Cao, H; Chen, YG; Choi, Y; Fong, HH; Huang, R; Jermihov, KC; Kondratyuk, TP; Liu, Y; Marler, LE; Mesecar, AD; Pezzuto, JM; Qiu, X; Sturdy, M; van Breemen, RB; Wang, LQ; Yang, JH; Yu, R; Zhang, HJ1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Kalra, S; Khatik, GL; Kumar, GN; Kumar, R; Narang, R; Nayak, SK; Singh, SK; Sudhakar, K1
Arora, S; Chaturvedi, A; Heuser, M; Joshi, G; Kumar, R; Patil, S1

Reviews

1 review(s) available for resveratrol and quercetin 3-o-glucopyranoside

ArticleYear
Recent advancements in mechanistic studies and structure activity relationship of F
    European journal of medicinal chemistry, 2019, Nov-15, Volume: 182

    Topics: Animals; Anti-Bacterial Agents; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium; Proton-Translocating ATPases; Structure-Activity Relationship

2019

Other Studies

5 other study(ies) available for resveratrol and quercetin 3-o-glucopyranoside

ArticleYear
Expanding the ChemGPS chemical space with natural products.
    Journal of natural products, 2005, Volume: 68, Issue:7

    Topics: Biological Products; Combinatorial Chemistry Techniques; Computer Graphics; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Drug Evaluation, Preclinical; Molecular Structure; Prostaglandin-Endoperoxide Synthases; Structure-Activity Relationship

2005
Vanillic acid glycoside and quinic acid derivatives from Gardeniae Fructus.
    Journal of natural products, 2006, Volume: 69, Issue:4

    Topics: Antioxidants; Gardenia; Glycosides; HIV Integrase Inhibitors; Korea; Molecular Structure; Plants, Medicinal; Quinic Acid; Vanillic Acid

2006
Bioactive compounds from the fern Lepisorus contortus.
    Journal of natural products, 2011, Feb-25, Volume: 74, Issue:2

    Topics: Animals; Anticarcinogenic Agents; Antineoplastic Agents; Aromatase Inhibitors; Caffeic Acids; Cyclooxygenase Inhibitors; Drug Screening Assays, Antitumor; Flavonoids; Glycosides; Humans; Inhibitory Concentration 50; Kaempferols; Mice; Molecular Structure; NF-kappa B; Nitric Oxide; Polypodiaceae; Quercetin; Tumor Necrosis Factor-alpha

2011
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2.
    Journal of medicinal chemistry, 2022, 01-27, Volume: 65, Issue:2

    Topics: Allosteric Regulation; Allosteric Site; Carrier Proteins; Chemistry, Pharmaceutical; Glycolysis; Humans; Membrane Proteins; Protein Kinase Inhibitors; Thyroid Hormone-Binding Proteins; Thyroid Hormones

2022