resveratrol has been researched along with quercetin 3-o-glucopyranoside in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 3 (50.00) | 24.3611 |
2020's | 1 (16.67) | 2.80 |
Authors | Studies |
---|---|
Backlund, A; Bohlin, L; Gottfries, J; Larsson, J | 1 |
Jin, C; Kim, EJ; Kim, HJ; Lee, YS; Seo, SH; Shin, CG | 1 |
Cao, H; Chen, YG; Choi, Y; Fong, HH; Huang, R; Jermihov, KC; Kondratyuk, TP; Liu, Y; Marler, LE; Mesecar, AD; Pezzuto, JM; Qiu, X; Sturdy, M; van Breemen, RB; Wang, LQ; Yang, JH; Yu, R; Zhang, HJ | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Kalra, S; Khatik, GL; Kumar, GN; Kumar, R; Narang, R; Nayak, SK; Singh, SK; Sudhakar, K | 1 |
Arora, S; Chaturvedi, A; Heuser, M; Joshi, G; Kumar, R; Patil, S | 1 |
1 review(s) available for resveratrol and quercetin 3-o-glucopyranoside
Article | Year |
---|---|
Recent advancements in mechanistic studies and structure activity relationship of F
Topics: Animals; Anti-Bacterial Agents; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium; Proton-Translocating ATPases; Structure-Activity Relationship | 2019 |
5 other study(ies) available for resveratrol and quercetin 3-o-glucopyranoside
Article | Year |
---|---|
Expanding the ChemGPS chemical space with natural products.
Topics: Biological Products; Combinatorial Chemistry Techniques; Computer Graphics; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Drug Evaluation, Preclinical; Molecular Structure; Prostaglandin-Endoperoxide Synthases; Structure-Activity Relationship | 2005 |
Vanillic acid glycoside and quinic acid derivatives from Gardeniae Fructus.
Topics: Antioxidants; Gardenia; Glycosides; HIV Integrase Inhibitors; Korea; Molecular Structure; Plants, Medicinal; Quinic Acid; Vanillic Acid | 2006 |
Bioactive compounds from the fern Lepisorus contortus.
Topics: Animals; Anticarcinogenic Agents; Antineoplastic Agents; Aromatase Inhibitors; Caffeic Acids; Cyclooxygenase Inhibitors; Drug Screening Assays, Antitumor; Flavonoids; Glycosides; Humans; Inhibitory Concentration 50; Kaempferols; Mice; Molecular Structure; NF-kappa B; Nitric Oxide; Polypodiaceae; Quercetin; Tumor Necrosis Factor-alpha | 2011 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2.
Topics: Allosteric Regulation; Allosteric Site; Carrier Proteins; Chemistry, Pharmaceutical; Glycolysis; Humans; Membrane Proteins; Protein Kinase Inhibitors; Thyroid Hormone-Binding Proteins; Thyroid Hormones | 2022 |