resveratrol has been researched along with orlistat in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (75.00) | 24.3611 |
2020's | 1 (25.00) | 2.80 |
Authors | Studies |
---|---|
Abramson, HN | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Arzola-Paniagua, MA; Calvo-Vargas, CG; García-Salgado López, ER; Guevara-Cruz, M | 1 |
1 trial(s) available for resveratrol and orlistat
Article | Year |
---|---|
Efficacy of an orlistat-resveratrol combination for weight loss in subjects with obesity: A randomized controlled trial.
Topics: Adult; Aged; Anthropometry; Anti-Obesity Agents; Body Mass Index; Caloric Restriction; Diet; Double-Blind Method; Drug Therapy, Combination; Energy Intake; Female; Humans; Lactones; Leptin; Male; Mexico; Middle Aged; Obesity; Orlistat; Placebos; Resveratrol; Stilbenes; Treatment Outcome; Triglycerides; Weight Loss | 2016 |
3 other study(ies) available for resveratrol and orlistat
Article | Year |
---|---|
The lipogenesis pathway as a cancer target.
Topics: Acetyl-CoA Carboxylase; Animals; Antineoplastic Agents; ATP Citrate (pro-S)-Lyase; Biosynthetic Pathways; Fatty Acid Synthases; Fatty Acids; Humans; Lipogenesis; Models, Chemical; Molecular Structure; Neoplasms | 2011 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |