resveratrol has been researched along with n-methyladenosine in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (33.33) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 2 (66.67) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Griñán-Ferré, C; Izquierdo, V; Pallàs, M; Palomera-Ávalos, V | 1 |
3 other study(ies) available for resveratrol and n-methyladenosine
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |
Resveratrol Supplementation Attenuates Cognitive and Molecular Alterations under Maternal High-Fat Diet Intake: Epigenetic Inheritance over Generations.
Topics: Adenosine; Animals; Body Weight; Brain; Cognition; Diet, High-Fat; Dietary Supplements; DNA Methylation; Epigenesis, Genetic; Epigenomics; Female; Inflammation; Leptin; Male; Maternal Exposure; Maze Learning; Methylation; Mice; Neurodegenerative Diseases; Neuronal Plasticity; Obesity; Pregnancy; Pregnancy, Animal; Prenatal Exposure Delayed Effects; Resveratrol; Triglycerides | 2021 |