resveratrol has been researched along with monocrotaline in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 4 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Gao, YH; Hao, XQ; Li, XH; Xu, YL; Yang, DL; Yang, XJ; Zhang, HG | 1 |
Chicoine, LG; Lucchesi, PA; Stewart, JA | 1 |
Ballabh, P; Csiszar, A; de Cabo, R; Gupte, S; Hu, F; Labinskyy, N; Losonczy, G; Mathew, R; Olson, S; Pinto, JT; Podlutsky, A; Ungvari, Z; Wolin, MS; Wu, JM | 1 |
Anderson, T; Campen, MJ; Candelaria, G; Hesterman, J; Hoppin, J; Irwin, D; Lucas, S; Norenberg, J; Paffett, ML | 1 |
Chai, L; Chen, Y; Feng, W; Li, M; Li, S; Liu, P; Shi, W; Wang, J; Wang, Q; Yan, X; Zhai, C; Zhang, Q; Zhu, Y | 1 |
6 other study(ies) available for resveratrol and monocrotaline
Article | Year |
---|---|
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Resveratrol inhibits right ventricular hypertrophy induced by monocrotaline in rats.
Topics: Animals; Apoptosis; Cardiotonic Agents; Heart; Hypertrophy, Right Ventricular; Male; Monocrotaline; Myocardium; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2010 |
Is resveratrol the magic bullet for pulmonary hypertension?
Topics: Animals; Blood Pressure; Cell Proliferation; Dose-Response Relationship, Drug; Endothelium, Vascular; Gene Expression; Hypertension, Pulmonary; Models, Biological; Monocrotaline; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxidative Stress; Pulmonary Artery; Rats; Resveratrol; Stilbenes; Tumor Necrosis Factors; Vasodilation; Vasodilator Agents | 2009 |
Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats.
Topics: Animals; Blood Pressure; Blotting, Western; Cell Proliferation; Cells, Cultured; Dose-Response Relationship, Drug; Endothelium, Vascular; Gene Expression; Hypertension, Pulmonary; Interleukin-6; Male; Monocrotaline; Muscle, Smooth, Vascular; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxidative Stress; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Resveratrol; Reverse Transcriptase Polymerase Chain Reaction; Stilbenes; Tumor Necrosis Factors; Vasodilation; Vasodilator Agents | 2009 |
Longitudinal in vivo SPECT/CT imaging reveals morphological changes and cardiopulmonary apoptosis in a rodent model of pulmonary arterial hypertension.
Topics: Animals; Annexins; Apoptosis; Blood Pressure; Disease Models, Animal; Familial Primary Pulmonary Hypertension; Heart Ventricles; Humans; Hypertension, Pulmonary; Lung; Male; Monocrotaline; Myocardium; Perfusion; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Systole; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; Ventricular Remodeling | 2012 |
Resveratrol inhibits monocrotaline-induced pulmonary arterial remodeling by suppression of SphK1-mediated NF-κB activation.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Hypertension, Pulmonary; Male; Monocrotaline; NF-kappa B; Phosphotransferases (Alcohol Group Acceptor); Rats; Rats, Sprague-Dawley; Resveratrol; Signal Transduction; Stilbenes; Vascular Remodeling | 2018 |