resveratrol has been researched along with hesperetin in 16 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (12.50) | 29.6817 |
2010's | 12 (75.00) | 24.3611 |
2020's | 2 (12.50) | 2.80 |
Authors | Studies |
---|---|
Barbhuiya, TK; Jayaprakash, V; Mohd Siddique, MU; Sinha, BN | 1 |
Domina, NG; Khlebnikov, AI; Kirpotina, LN; Quinn, MT; Schepetkin, IA | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Bijak, M; Krotkiewski, H; Nowak, P; Pawlaczyk, I; Ponczek, M; Saluk, J; Wachowicz, B; Ziewiecki, R | 1 |
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM | 1 |
Guo, CL; Guo, SJ; Jiang, B; Li, N; Li, XQ; Shi, DY; Wang, LJ | 1 |
Fujisaw, S; Ishihara, M; Kadoma, Y | 1 |
Fordham, JB; Naqvi, AR; Nares, S | 1 |
Gu, L; Jia, A; Qi, Y; Rocca, JR; Sarnoski, PJ; Wang, W | 1 |
Keck, CM; Müller, RH; Romero, GB | 1 |
Anwar, A; Fowler, M; Jenkins, G; Kandala, NB; Messenger, D; Qureshi, S; Rabbani, N; Shafie, A; Thornalley, PJ; Waldron, M; Weickert, MO; Xue, M | 1 |
Liu, T; Möschwitzer, JP; Müller, RH | 1 |
Kaufman, RJ; Li, H; Monks, TJ; O'Meara, M; Seyoum, B; Wang, JM; Yi, Z; Zhang, K; Zhang, X | 1 |
Ghahremani, MH; Ilbeigi, D; Khaghani, S; Khedri, A; Meshkani, R; Nourbakhsh, M; Shahmohamadnejad, S; Shokri Afra, H; Zangooei, M | 1 |
Rabbani, N; Thornalley, PJ; Weickert, MO; Xue, M | 1 |
Rabbani, N; Thornalley, PJ | 1 |
3 review(s) available for resveratrol and hesperetin
Article | Year |
---|---|
Phytoestrogens and their synthetic analogues as substrate mimic inhibitors of CYP1B1.
Topics: Animals; Antineoplastic Agents, Phytogenic; Classification; Cluster Analysis; Cytochrome P-450 CYP1B1; Enzyme Inhibitors; Humans; Molecular Mimicry; Neoplasms; Phytoestrogens | 2019 |
Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus.
Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Humans; Hypoglycemic Agents; Molecular Docking Simulation; Structure-Activity Relationship | 2018 |
Emerging Glycation-Based Therapeutics-Glyoxalase 1 Inducers and Glyoxalase 1 Inhibitors.
Topics: Animals; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Enzyme Induction; Glutathione; Glycosylation; Hesperidin; Humans; Insulin Resistance; Lactoylglutathione Lyase; Mice; Molecular Structure; Neoplasms, Experimental; Obesity; Pyruvaldehyde; Resveratrol | 2022 |
2 trial(s) available for resveratrol and hesperetin
Article | Year |
---|---|
Improved Glycemic Control and Vascular Function in Overweight and Obese Subjects by Glyoxalase 1 Inducer Formulation.
Topics: Adolescent; Adult; Aged; Aged, 80 and over; Blood Glucose; Cell Line; Cross-Over Studies; Female; Glutathione; Glutathione Disulfide; Hep G2 Cells; Hesperidin; Humans; Lactoylglutathione Lyase; Male; Middle Aged; Models, Biological; Obesity; Overweight; Pyruvaldehyde; Resveratrol; Stilbenes; Young Adult | 2016 |
Reversal of Insulin Resistance in Overweight and Obese Subjects by
Topics: Adult; Blood Pressure; Body Mass Index; Carrier Proteins; Correlation of Data; Cross-Over Studies; Dietary Supplements; Double-Blind Method; Drug Therapy, Combination; Dyslipidemias; Female; Glucose Metabolism Disorders; Glycosylation; Hesperidin; Humans; Inflammation; Inflammation Mediators; Insulin Resistance; Leukocytes, Mononuclear; Male; Obesity; Overweight; Pyruvaldehyde; Resveratrol; Tumor Necrosis Factor-alpha | 2021 |
11 other study(ies) available for resveratrol and hesperetin
Article | Year |
---|---|
Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems.
Topics: Animals; Antioxidants; Drug Design; Flavonoids; Humans; Phagocytes; Phenols; Polyphenols; Quantitative Structure-Activity Relationship | 2007 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Thrombin inhibitory activity of some polyphenolic compounds.
Topics: | 2014 |
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship | 2015 |
Kinetic evaluation of the reactivity of flavonoids as radical scavengers.
Topics: Catechin; Flavonoids; Free Radical Scavengers; Free Radicals; Hesperidin; Kinetics; Molecular Structure; Polymers; Propyl Gallate; Quercetin; Resveratrol; Stilbenes; Structure-Activity Relationship | 2002 |
Leukocyte production of inflammatory mediators is inhibited by the antioxidants phloretin, silymarin, hesperetin, and resveratrol.
Topics: Aggregatibacter actinomycetemcomitans; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Cell Differentiation; Cells, Cultured; Cytokines; Escherichia coli; Hesperidin; Humans; I-kappa B Proteins; Inflammation; Leukocytes; Leukocytes, Mononuclear; Lipopolysaccharides; Monocytes; Neutrophils; NF-KappaB Inhibitor alpha; Phloretin; Resveratrol; RNA, Messenger; Silymarin; Stilbenes | 2014 |
Scavenging of Toxic Acrolein by Resveratrol and Hesperetin and Identification of Adducts.
Topics: Acrolein; Antioxidants; Hesperidin; Hydrogen-Ion Concentration; Molecular Structure; Resveratrol; Stilbenes | 2015 |
Simple low-cost miniaturization approach for pharmaceutical nanocrystals production.
Topics: Apigenin; Ascorbic Acid; Chemistry, Pharmaceutical; Cyclosporine; Hesperidin; Miniaturization; Nanoparticles; Particle Size; Resveratrol; Stilbenes; Suspensions; Technology, Pharmaceutical | 2016 |
Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency.
Topics: Calorimetry, Differential Scanning; Crystallization; Desiccation; Glyburide; Hesperidin; Microscopy, Electron, Scanning; Nanoparticles; Particle Size; Powder Diffraction; Quercetin; Resveratrol; Rutin; Stilbenes; Technology, Pharmaceutical | 2018 |
Ameliorating Methylglyoxal-Induced Progenitor Cell Dysfunction for Tissue Repair in Diabetes.
Topics: Animals; Bone Marrow Cells; Cell- and Tissue-Based Therapy; Diabetes Mellitus, Type 2; Disease Models, Animal; Endoribonucleases; Gene Knock-In Techniques; Gene Transfer Techniques; Hesperidin; Lactoylglutathione Lyase; Mice; Neovascularization, Physiologic; Protein Serine-Threonine Kinases; Pyruvaldehyde; Resveratrol; Skin; Stem Cells; Wound Healing; Wounds and Injuries | 2019 |
Hesperetin is a potent bioactivator that activates SIRT1-AMPK signaling pathway in HepG2 cells.
Topics: AMP-Activated Protein Kinases; Carbazoles; Hep G2 Cells; Hesperidin; Humans; Phosphorylation; Resveratrol; Signal Transduction; Sirtuin 1 | 2019 |