resveratrol has been researched along with gemcitabine in 12 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (8.33) | 29.6817 |
2010's | 9 (75.00) | 24.3611 |
2020's | 2 (16.67) | 2.80 |
Authors | Studies |
---|---|
Beach, LB; Dapp, MJ; Heineman, RH; Mansky, LM; Martin, JL; Patterson, SE; Rawson, JM; Schnettler, EK | 1 |
Bonnac, L; Clouser, CL; Daly, MB; Kim, B; Landman, SR; Mansky, LM; Patterson, SE; Rawson, JM; Reilly, CS; Roth, ME; Xie, J | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Bodo, J; Duraj, J; Rauko, P; Sedlak, J; Sulikova, M | 1 |
Aggarwal, BB; Anand, P; Diagaradjane, P; Gelovani, J; Guha, S; Harikumar, KB; Krishnan, S; Kunnumakkara, AB; Pandey, MK; Sethi, G | 1 |
DeMorrow, S; Frampton, GA; Lazcano, EA; Li, H; Mohamad, A | 1 |
Chen, K; Chen, X; Duan, W; Gao, L; Jiang, Z; Lei, M; Ma, J; Ma, Q; Sun, L; Wang, Z; Zhou, C | 1 |
Bedel, A; Brillac, A; Buscail, E; Dabernat, S; de Verneuil, H; Moranvillier, I; Moreau-Gaudry, F; Peuchant, E; Rousseau, B; Vendrely, V | 1 |
Gurunathan, S; Peng, QL; Yuan, YG | 1 |
Cao, J; Chen, K; Cheng, L; Jiang, Z; Li, J; Ma, J; Ma, Q; Qian, W; Sha, H; Sun, L; Yan, B; Zhou, C | 1 |
Cao, J; Cheng, L; Duan, W; Jiang, Z; Li, J; Li, X; Ma, J; Ma, Q; Qian, W; Sun, L; Wang, F; Wu, E; Wu, Z; Yan, B; Zhou, C | 1 |
Li, J; Liu, J; Liu, Y; Qi, Z; Shen, Y; Tian, W; Yang, L; Yang, Y; Zhang, Q; Zhu, M | 1 |
12 other study(ies) available for resveratrol and gemcitabine
Article | Year |
---|---|
5,6-Dihydro-5-aza-2'-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors.
Topics: Anti-HIV Agents; Cell Line, Tumor; Cell Survival; Deoxycytidine; Enzyme Inhibitors; Genes, Reporter; Green Fluorescent Proteins; HIV-1; Humans; Luminescent Proteins; Mutation; Red Fluorescent Protein; Resveratrol; Ribonucleotide Reductases; Stilbenes; Viral Proteins | 2013 |
Synergistic reduction of HIV-1 infectivity by 5-azacytidine and inhibitors of ribonucleotide reductase.
Topics: Anti-HIV Agents; Azacitidine; Dose-Response Relationship, Drug; Enzyme Inhibitors; HIV Infections; HIV-1; Humans; Microbial Sensitivity Tests; Molecular Structure; Ribonucleotide Reductases; Structure-Activity Relationship | 2016 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |
Diverse resveratrol sensitization to apoptosis induced by anticancer drugs in sensitive and resistant leukemia cells.
Topics: Anticarcinogenic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Busulfan; Cell Cycle; Cell Line, Tumor; Cycloheximide; Deoxycytidine; Doxorubicin; Drug Resistance, Neoplasm; Flow Cytometry; Gemcitabine; Humans; Leukemia; Paclitaxel; Resveratrol; Stilbenes | 2006 |
Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer.
Topics: Adenocarcinoma; Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Blotting, Western; Carcinoma, Pancreatic Ductal; Cell Cycle; Cell Proliferation; Cyclooxygenase 2; Deoxycytidine; Gemcitabine; Humans; Immunoenzyme Techniques; In Vitro Techniques; Male; Mice; Mice, Nude; NF-kappa B; Pancreatic Neoplasms; Resveratrol; Stilbenes; Tumor Cells, Cultured; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays | 2010 |
Resveratrol enhances the sensitivity of cholangiocarcinoma to chemotherapeutic agents.
Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Proliferation; Cholangiocarcinoma; Cytochrome P-450 Enzyme System; Deoxycytidine; Fluorouracil; Gemcitabine; Mice; Mice, Nude; Mitomycin; Resveratrol; Stilbenes | 2010 |
YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine.
Topics: Adaptor Proteins, Signal Transducing; AMP-Activated Protein Kinases; Antineoplastic Agents; Cell Line, Tumor; Deoxycytidine; Enzyme Inhibitors; Gemcitabine; Gene Expression Regulation, Enzymologic; Humans; Pancreatic Neoplasms; Phosphoproteins; Resveratrol; RNA Interference; Signal Transduction; Stilbenes; Transcription Factors; YAP-Signaling Proteins | 2016 |
Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Capsaicin; Cell Cycle; Cell Line, Tumor; Deoxycytidine; Dose-Response Relationship, Drug; Gemcitabine; Humans; Mice; Mice, Nude; Pancreatic Neoplasms; Resveratrol; Signal Transduction; Stilbenes | 2017 |
Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment.
Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Cell Proliferation; Deoxycytidine; Drug Delivery Systems; Female; Gemcitabine; Gene Expression Regulation, Neoplastic; Humans; Metal Nanoparticles; Ovarian Neoplasms; Resveratrol; Silver; Stilbenes | 2017 |
Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways.
Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Deoxycytidine; Down-Regulation; Gemcitabine; Humans; Mitochondria; NF-E2-Related Factor 2; Pancreatic Neoplasms; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Resveratrol; Ribonucleoproteins; RNA Interference; RNA, Small Interfering; Signal Transduction; Stilbenes | 2018 |
Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1.
Topics: Animals; Antimetabolites, Antineoplastic; Antineoplastic Agents, Phytogenic; Apoptosis; Cell Line, Tumor; Cell Proliferation; Deoxycytidine; Gemcitabine; Humans; Lipids; Mice; Mice, Transgenic; Neoplastic Stem Cells; Pancreas; Pancreatic Neoplasms; Resveratrol; RNA Interference; RNA, Small Interfering; Signal Transduction; Sterol Regulatory Element Binding Protein 1; Xenograft Model Antitumor Assays | 2019 |
Gemcitabine potentiates anti-tumor effect of resveratrol on pancreatic cancer via down-regulation of VEGF-B.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Biomarkers, Tumor; Cell Proliferation; Deoxycytidine; Drug Synergism; Female; Gemcitabine; Gene Expression Regulation, Neoplastic; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Pancreatic Neoplasms; Resveratrol; Tumor Cells, Cultured; Vascular Endothelial Growth Factor B; Xenograft Model Antitumor Assays | 2021 |