resveratrol has been researched along with Pinosylvin methyl ether in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 4 (80.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Ahn, YH; Bae, CM; Lee, SK; Min, HY; Park, EJ; Pyee, JH | 1 |
Becnel, JJ; Coy, MR; Cutler, SJ; Gloer, JB; Khan, SI; Manly, SP; Neff, SA; Sobolev, VS; Tabanca, N; Wedge, DE | 1 |
De Petrocellis, L; Di Marzo, V; Morera, E; Moriello, AS; Nalli, M; Ortar, G | 1 |
Dai, Y; Kogure, Y; Mabuchi, M; Nakao, S; Noguchi, K; Shimizu, T; Tanaka, A; Wang, S | 1 |
Eräsalo, H; Haavikko, R; Hämäläinen, M; Laavola, M; Leppänen, T; Mäki-Opas, I; Moilanen, E; Yli-Kauhaluoma, J | 1 |
5 other study(ies) available for resveratrol and Pinosylvin methyl ether
Article | Year |
---|---|
Synthesis and inhibitory effects of pinosylvin derivatives on prostaglandin E2 production in lipopolysaccharide-induced mouse macrophage cells.
Topics: Animals; Cell Line; Dinoprostone; Lipopolysaccharides; Macrophages; Mice; Stilbenes | 2004 |
Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic Stilbenoids.
Topics: Animals; Anti-Inflammatory Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Arachis; Cell Line, Tumor; Fungicides, Industrial; Humans; Insecticides; Phytoalexins; Plants; Receptors, Opioid; Seeds; Sesquiterpenes; Stilbenes | 2011 |
TRPA1 channels as targets for resveratrol and related stilbenoids.
Topics: Animals; Calcium; HEK293 Cells; Humans; Inhibitory Concentration 50; Ion Transport; Protein Binding; Rats; Resveratrol; Stilbenes; TRPA1 Cation Channel; TRPC Cation Channels | 2016 |
Synthesis of resveratrol derivatives as new analgesic drugs through desensitization of the TRPA1 receptor.
Topics: Analgesics; Animals; Calcium Channels; Ganglia, Spinal; HEK293 Cells; Humans; Inhibitory Concentration 50; Nerve Tissue Proteins; Pain; Patch-Clamp Techniques; Rats; Resveratrol; Stilbenes; Transient Receptor Potential Channels; TRPA1 Cation Channel | 2017 |
Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and Down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner.
Topics: Animals; Anti-Inflammatory Agents; Biological Products; Cell Line; Chemokine CCL2; Down-Regulation; Inflammation; Inflammation Mediators; Interleukin-6; Macrophages; Male; Mice; Mice, Inbred C57BL; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction | 2018 |