resveratrol has been researched along with D-fructopyranose in 28 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (14.29) | 29.6817 |
2010's | 18 (64.29) | 24.3611 |
2020's | 6 (21.43) | 2.80 |
Authors | Studies |
---|---|
Cruzado, M; Miatello, R; Renna, N; Risler, N; Vázquez, M; Zumino, AP | 1 |
Chen, M; Gupta, M; Gupta, MP; Pillai, JB; Pillai, VB; Rajamohan, SB; Samant, S | 1 |
Barrieu, F; Belhadj, A; Cluzet, S; Hamdi, S; Mérillon, JM; Saigne, C; Telef, N | 1 |
Deng, JY; Hsieh, PS; Huang, JP; Hung, LM; Lu, LS | 1 |
Akar, F; Aydın, A; Aytekin, YA; Elbeg, S; Sahin, K; Tuzcu, M; Uludağ, O | 1 |
Bagul, PK; Banerjee, SK; Bastia, T; Chakravarty, S; Madhusudana, K; Matapally, S; Middela, H; Padiya, R; Reddy, BR | 1 |
Bulearca, AM; Craciun, A; Donoiu, I; Militaru, C; Scorei, ID; Scorei, RI | 1 |
Akar, F; Babacanoglu, C; Pektas, MB; Sadi, G; Yildirim, N | 1 |
Giri, PR; Majumdar, AS; Pai, SA | 1 |
Ferriero, DM; Juul, SE | 1 |
Chen, BZ; Cheng, PW; Cheng, WH; Ho, WY; Hsiao, M; Lu, PJ; Lu, WH; Su, YT; Sun, GC; Tseng, CJ; Yeh, TC | 1 |
Huang, F; Kou, J; Li, J; Liu, B; Liu, K; Qi, L; Sun, Y; Wang, M; Xiao, N | 1 |
Bekpinar, S; Develi-Is, S; Dogan, BS; Ozen, G; Topal, G; Unlucerci, Y; Uysal, M | 1 |
Du, Q; Jiang, C; Liu, B; Liu, Z; Zhang, J | 1 |
Akar, F; Pektaş, MB; Sadi, G | 1 |
Abd El-Haleim, EA; Bahgat, AK; Saleh, S | 1 |
Akar, F; Koca, HB; Pektas, MB; Sadi, G | 1 |
Chen, HH; Cheng, PW; Hsiao, M; Lai, CC; Lee, HC; Lin, YT; Liu, CP; Lu, PJ; Sun, GC; Tseng, CJ; Yeh, TC | 1 |
Bagul, PK; Banerjee, SK; Chakravarty, S; Jhelum, P; Kaur, G; Kumar, A; Kumar, KP; Maitra, S; Reddy, BR | 1 |
Chen, Q; Li, J; Qiu, F; Wang, S; Wang, T; Yu, H; Zhang, Y | 1 |
Bircan, FS; Pasaoglu, OT; Turkozkan, N; Yilmaz Demirtas, C | 1 |
Akar, F; Ozturk Bingol, G; Pektas, MB; Sadi, G; Sumlu, E; Turan, O | 1 |
Bagul, PK; Banerjee, SK; Rai, RC | 1 |
Gmoshinski, IV; Mzhelskaya, KV; Riger, NА; Shipelin, VА; Shumakova, АА; Timonin, АN; Trusov, NV; Аpryatin, SА | 1 |
Biasutto, L; Bujanda, L; Fernández-Quintela, A; Gómez-Zorita, S; Lasa, A; Macarulla, MT; Milton-Laskibar, I; Miranda, J; Portillo, MP; Segues, N | 1 |
Carrillo de Santa Pau, E; Fernández-Quintela, A; Gómez-Zorita, S; Marcos-Zambrano, LJ; Martínez, JA; Milton-Laskibar, I; Portillo, MP | 1 |
Chen, YY; Cheng, PW; Ho, CY; Sun, GC; Tseng, CJ; Wu, TT; Yeh, TC | 1 |
Akdemir, AS; Anapali, M; Aydemir, D; Kaya-Dagistanli, F; Ozturk, M; Tanriverdi, G; Ulusu, NN; Ulutin, T; Uysal, O | 1 |
2 review(s) available for resveratrol and D-fructopyranose
Article | Year |
---|---|
Pharmacologic neuroprotective strategies in neonatal brain injury.
Topics: Acetylcysteine; Allopurinol; Antioxidants; Ascorbic Acid; Biopterins; Erythropoietin; Excitatory Amino Acid Antagonists; Free Radical Scavengers; Fructose; Humans; Hypoxia-Ischemia, Brain; Infant, Extremely Premature; Infant, Newborn; Infant, Premature; Infant, Premature, Diseases; Melatonin; Memantine; Neuroprotective Agents; Nitric Oxide Synthase Type III; Resveratrol; Stilbenes; Topiramate; Vitamin E; Xenon | 2014 |
Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD).
Topics: Animals; Biological Products; Catechin; Curcumin; Fructose; Humans; Inflammation; Insulin Resistance; Lipogenesis; Mitochondria; Non-alcoholic Fatty Liver Disease; Resveratrol; Stilbenes | 2017 |
1 trial(s) available for resveratrol and D-fructopyranose
Article | Year |
---|---|
Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: effects on lipid profiles, inflammation markers, and quality of life.
Topics: Administration, Oral; Aged; Angina, Stable; Borates; C-Reactive Protein; Dietary Supplements; Double-Blind Method; Female; Fructose; Humans; Inflammation Mediators; Lipids; Male; Middle Aged; Natriuretic Peptide, Brain; Peptide Fragments; Quality of Life; Resveratrol; Stilbenes | 2013 |
25 other study(ies) available for resveratrol and D-fructopyranose
Article | Year |
---|---|
Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats.
Topics: Administration, Oral; Animal Feed; Animals; Antioxidants; Arteriosclerosis; Biomarkers; Blood Pressure; Follow-Up Studies; Fructose; Heart Ventricles; Hypertension; Insulin Resistance; Lipid Peroxidation; Male; Mesenteric Arteries; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Rats; Rats, Sprague-Dawley; Resveratrol; Risk Factors; Spectrophotometry; Stilbenes; Sweetening Agents; Thiobarbituric Acid Reactive Substances; Time Factors | 2005 |
Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression.
Topics: Animals; Antioxidants; Antithyroid Agents; Blotting, Western; Cardiomegaly; Cell Size; Cells, Cultured; Densitometry; Diet; Enzyme Activation; Fibrosis; Fructose; Male; Mice; Mice, Transgenic; Myocardium; Myosin Heavy Chains; NAD; Nutritional Physiological Phenomena; Propylthiouracil; Resveratrol; RNA; Sirtuin 1; Sirtuins; Stilbenes; Transfection | 2008 |
Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures.
Topics: Acetates; Acyltransferases; Anthocyanins; Carbohydrate Metabolism; Cyclopentanes; Fructose; Fruit; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Glucose; Oxylipins; Plant Growth Regulators; Resveratrol; Stilbenes; Sucrose; Sweetening Agents; Vitis; Wine | 2008 |
Activation of estrogen receptor is crucial for resveratrol-stimulating muscular glucose uptake via both insulin-dependent and -independent pathways.
Topics: Animals; Antioxidants; Cholesterol, Dietary; Deoxyglucose; Dietary Carbohydrates; Fructose; Glucose; Glucose Clamp Technique; Insulin; Male; Muscle Fibers, Skeletal; Muscle, Skeletal; Rats; Rats, Sprague-Dawley; Receptors, Estrogen; Resveratrol; Stilbenes | 2008 |
High-fructose corn syrup causes vascular dysfunction associated with metabolic disturbance in rats: protective effect of resveratrol.
Topics: Animals; Antioxidants; Aorta, Thoracic; Blood Glucose; Blood Pressure; Blotting, Western; Body Weight; Fructose; Insulin; Lipids; Male; NADPH Oxidases; Nitric Oxide; Phenylephrine; Rats; Rats, Wistar; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Superoxides; Vascular Diseases; Vasoconstrictor Agents | 2012 |
Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats.
Topics: Animals; Ascorbic Acid; Blood Glucose; Body Weight; Catalase; Eating; Fructose; Glucose Tolerance Test; Glutathione; Insulin; Insulin Resistance; Liver; Male; Metabolic Syndrome; Metformin; NF-E2-Related Factor 2; Nitric Oxide; Oxidative Stress; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes; Superoxide Dismutase; Thiobarbituric Acid Reactive Substances; Triglycerides; Uric Acid | 2012 |
Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.
Topics: Animals; Body Weight; Cholesterol, VLDL; Endothelin-1; Fructose; Gene Expression; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Male; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Rats; Rats, Wistar; Resveratrol; RNA, Messenger; Stilbenes; Sweetening Agents; Triglycerides | 2013 |
Resveratrol- and melatonin-abated ovariectomy and fructose diet-induced obesity and metabolic alterations in female rats.
Topics: Administration, Oral; Animals; Antioxidants; Diabetes Mellitus; Diet; Disease Models, Animal; Female; Fructose; Melatonin; Obesity; Ovariectomy; Random Allocation; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2014 |
Resveratrol decreases fructose-induced oxidative stress, mediated by NADPH oxidase via an AMPK-dependent mechanism.
Topics: AMP-Activated Protein Kinases; Animals; Antioxidants; Blood Pressure; Cerebellum; Fructose; Hypertension; Male; NADPH Oxidases; Nitric Oxide Synthase Type I; Nitrogen Oxides; Oxidative Stress; Proto-Oncogene Proteins c-akt; Rats, Inbred WKY; Reactive Oxygen Species; Resveratrol; Solitary Nucleus; Stilbenes; Superoxide Dismutase; Superoxide Dismutase-1 | 2014 |
Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1.
Topics: Adipokines; Adipose Tissue; Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Aorta; Culture Media, Conditioned; Diet; Fructose; Metformin; NF-kappa B; Palmitic Acid; Rats; Resveratrol; Ribonucleotides; Sirtuin 1; Sodium Salicylate; Stilbenes; Vasodilation | 2014 |
Resveratrol improves high-fructose-induced vascular dysfunction in rats.
Topics: Animals; Antioxidants; Aorta, Thoracic; Arginine; Fructose; Fructose-Bisphosphate Aldolase; Glucose Transporter Type 5; Insulin; Leptin; Male; Muscle, Smooth, Vascular; Rats, Wistar; Resveratrol; RNA, Messenger; Sirtuin 1; Stilbenes; Vasoconstriction; Vasodilation | 2014 |
Resveratrol inhibits inflammation and ameliorates insulin resistant endothelial dysfunction via regulation of AMP-activated protein kinase and sirtuin 1 activities.
Topics: AMP-Activated Protein Kinases; Animals; Blotting, Western; Cytokines; Diabetes Mellitus, Experimental; Endothelium, Vascular; Fructose; Gene Expression Regulation; Inflammation; Insulin Resistance; Male; Microscopy, Fluorescence; Nitric Oxide; Phosphorylation; Rats, Sprague-Dawley; Resveratrol; Signal Transduction; Sirtuin 1; Stilbenes; Vasodilation | 2016 |
Long-Term Dietary Fructose Causes Gender-Different Metabolic and Vascular Dysfunction in Rats: Modulatory Effects of Resveratrol.
Topics: Acetylcholine; Animals; Antioxidants; Aorta; Body Weight; Diet; Female; Fructose; Insulin; Insulin Receptor Substrate Proteins; Lipoproteins, VLDL; Male; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Phenylephrine; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Resveratrol; Sex Factors; Sirtuin 1; Stilbenes; Triglycerides | 2015 |
Resveratrol and fenofibrate ameliorate fructose-induced nonalcoholic steatohepatitis by modulation of genes expression.
Topics: Animals; Disease Models, Animal; Drug Therapy, Combination; Energy Metabolism; Fenofibrate; Fructose; Gene Expression Regulation; Liver; Male; Non-alcoholic Fatty Liver Disease; Rats; Resveratrol; Stilbenes; Time Factors | 2016 |
Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol.
Topics: Adipose Tissue, White; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cytokines; Dietary Carbohydrates; Female; Fructose; Gonadal Steroid Hormones; Inflammation; Insulin; Male; Rats; Rats, Wistar; Resveratrol; Signal Transduction; Stilbenes | 2016 |
Resveratrol Inhibition of Rac1-Derived Reactive Oxygen Species by AMPK Decreases Blood Pressure in a Fructose-Induced Rat Model of Hypertension.
Topics: AMP-Activated Protein Kinases; Animals; Antioxidants; Blood Pressure; Disease Models, Animal; Enzyme Activators; Fructose; Hypertension; rac1 GTP-Binding Protein; Rats, Inbred WKY; Reactive Oxygen Species; Resveratrol; Stilbenes | 2016 |
Sirtuin 1 and 7 mediate resveratrol-induced recovery from hyper-anxiety in high-fructose-fed prediabetic rats.
Topics: Animals; Antioxidants; Anxiety Disorders; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet; Epigenesis, Genetic; Fructose; Gene Expression Regulation; Humans; Hyperglycemia; Hypoglycemic Agents; Insulin; Insulin Resistance; Metformin; Prediabetic State; Rats; Resveratrol; Sirtuin 1; Sirtuins; Stilbenes | 2016 |
The effects of resveratrol on hepatic oxidative stress in metabolic syndrome model induced by high fructose diet.
Topics: Animals; Antioxidants; Fructose; Glutathione Peroxidase; Insulin Resistance; Liver; Male; Metabolic Syndrome; Oxidants; Oxidative Stress; Rats; Resveratrol; Stilbenes; Superoxide Dismutase | 2018 |
High glucose causes vascular dysfunction through Akt/eNOS pathway: reciprocal modulation by juglone and resveratrol.
Topics: Acetylcholine; Animals; Aorta; Endothelium, Vascular; Fructose; Gene Expression Regulation; Glucose; In Vitro Techniques; Male; Naphthoquinones; Nitric Oxide Synthase Type III; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats, Wistar; Resveratrol; Signal Transduction; Stilbenes; Vasodilation | 2018 |
NLRP3 inflammasome drives inflammation in high fructose fed diabetic rat liver: Effect of resveratrol and metformin.
Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Fructose; Hypoglycemic Agents; Inflammasomes; Inflammation; Insulin Resistance; Liver; Male; Metformin; NLR Family, Pyrin Domain-Containing 3 Protein; Rats; Rats, Sprague-Dawley; Resveratrol | 2020 |
Effect of resveratrol on behavioral, biochemical, and immunological parameters of DBA/2J and tetrahybrid DBCB mice receiving diet with excess fat and fructose.
Topics: Animals; Antioxidants; Behavior, Animal; Diet, High-Fat; Dietary Carbohydrates; Dietary Fats; Elevated Plus Maze Test; Fructose; Ghrelin; Inflammation; Insulin Resistance; Interleukin-10; Interleukin-3; Leptin; Male; Mice; Mice, Inbred DBA; Obesity; Resveratrol; Triglycerides | 2021 |
Pterostilbene modifies triglyceride metabolism in hepatic steatosis induced by high-fat high-fructose feeding: a comparison with its analog resveratrol.
Topics: Adipose Tissue; Animals; Diet, High-Fat; Disease Models, Animal; Fatty Liver; Fructose; Lipids; Lipogenesis; Liver; Male; Rats; Rats, Wistar; Resveratrol; Stilbenes; Triglycerides | 2021 |
Gut Microbiota Induced by Pterostilbene and Resveratrol in High-Fat-High-Fructose Fed Rats: Putative Role in Steatohepatitis Onset.
Topics: Animals; Diet, Carbohydrate Loading; Diet, High-Fat; Dietary Fats; Fructose; Gastrointestinal Microbiome; Male; Non-alcoholic Fatty Liver Disease; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2021 |
Blocking of SGLT2 to Eliminate NADPH-Induced Oxidative Stress in Lenses of Animals with Fructose-Induced Diabetes Mellitus.
Topics: Animals; Cataract; Diabetes Mellitus; Fructose; Metformin; NADP; NADPH Oxidases; Oxidative Stress; Reactive Oxygen Species; Receptor for Advanced Glycation End Products; Resveratrol; Sodium-Glucose Transporter 2 | 2022 |
Combined resveratrol and vitamin D treatment ameliorate inflammation-related liver fibrosis, ER stress, and apoptosis in a high-fructose diet/streptozotocin-induced T2DM model.
Topics: Animals; Antioxidants; Apoptosis; Caspase 3; Diabetes Mellitus, Type 2; Diet; Endoplasmic Reticulum Stress; Fructose; Inflammation; Interleukin-6; Liver Cirrhosis; NF-kappa B; Oxidative Stress; Rats; Rats, Sprague-Dawley; Resveratrol; Streptozocin; Tumor Necrosis Factor-alpha; Vitamin D | 2022 |