Page last updated: 2024-08-16

resorcinol and acetazolamide

resorcinol has been researched along with acetazolamide in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (37.50)29.6817
2010's5 (62.50)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Hilvo, M; Innocenti, A; Parkkila, S; Scozzafava, A; Supuran, CT1
Innocenti, A; Scozzafava, A; Supuran, CT; Vullo, D1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Gülçin, I; Oztürk Sarikaya, SB; Sentürk, M; Supuran, CT; Topal, F1
Ekinci, D; Karagoz, L; Senturk, M; Supuran, CT1
Alankuş-Çalişkan, Ö; Bedir, E; Ekinci, D; Koz, Ö; Perrone, A; Piacente, S; Supuran, CT1
Çavdar, H; Ekinci, D; Güney, M; Şentürk, M1
Bua, S; Capasso, C; Del Prete, S; Entezari Heravi, Y; Gratteri, P; Nocentini, A; Saboury, AA; Sereshti, H; Supuran, CT1

Other Studies

8 other study(ies) available for resorcinol and acetazolamide

ArticleYear
Carbonic anhydrase inhibitors: Inhibition of the new membrane-associated isoform XV with phenols.
    Bioorganic & medicinal chemistry letters, 2008, Jun-15, Volume: 18, Issue:12

    Topics: Animals; Binding Sites; Carbonic Anhydrase I; Carbonic Anhydrase II; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Dose-Response Relationship, Drug; Humans; Hydrogen Bonding; Isoenzymes; Mice; Molecular Structure; Phenols; Stereoisomerism; Structure-Activity Relationship

2008
Carbonic anhydrase inhibitors: inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid.
    Bioorganic & medicinal chemistry, 2008, Aug-01, Volume: 16, Issue:15

    Topics: Acetaminophen; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Molecular Structure; Protein Isoforms; Salicylic Acid; Structure-Activity Relationship

2008
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds.
    Bioorganic & medicinal chemistry letters, 2011, Jul-15, Volume: 21, Issue:14

    Topics: Animals; Bass; Carbonic Anhydrase I; Carbonic Anhydrase II; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Fish Proteins; Humans; Isoenzymes; Phenols; Sulfonamides; Sulfonic Acids

2011
Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids.
    Journal of enzyme inhibition and medicinal chemistry, 2013, Volume: 28, Issue:2

    Topics: Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Dose-Response Relationship, Drug; Flavonoids; Humans; Molecular Structure; Protein Isoforms; Structure-Activity Relationship

2013
Analysis of saponins and phenolic compounds as inhibitors of α-carbonic anhydrase isoenzymes.
    Journal of enzyme inhibition and medicinal chemistry, 2013, Volume: 28, Issue:2

    Topics: Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Dose-Response Relationship, Drug; Humans; Molecular Structure; Phenols; Protein Isoforms; Saponins; Structure-Activity Relationship; Sulfonamides; Sulfonic Acids

2013
Synthesis and carbonic anhydrase inhibitory properties of novel uracil derivatives.
    Bioorganic & medicinal chemistry letters, 2015, Aug-15, Volume: 25, Issue:16

    Topics: Binding, Competitive; Carbonic Anhydrase I; Carbonic Anhydrase II; Carbonic Anhydrase Inhibitors; Erythrocytes; Humans; Isoenzymes; Kinetics; Molecular Conformation; Structure-Activity Relationship; Uracil

2015
Inhibition of Malassezia globosa carbonic anhydrase with phenols.
    Bioorganic & medicinal chemistry, 2017, 05-01, Volume: 25, Issue:9

    Topics: Acetazolamide; Carbonic Anhydrase I; Carbonic Anhydrase Inhibitors; Dandruff; Humans; Hydrogen Bonding; Malassezia; Molecular Docking Simulation; Phenols; Structure-Activity Relationship

2017