resiniferatoxin has been researched along with gingerol* in 2 studies
2 other study(ies) available for resiniferatoxin and gingerol
Article | Year |
---|---|
Detailed Analysis of the Binding Mode of Vanilloids to Transient Receptor Potential Vanilloid Type I (TRPV1) by a Mutational and Computational Study.
Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX) has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol) were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670) were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator. Topics: Amino Acids; Calcium; Capsaicin; Catechols; Diterpenes; DNA Mutational Analysis; Fatty Alcohols; Humans; Kinetics; Ligands; Models, Molecular; Molecular Docking Simulation; Mutant Proteins; Mutation; Point Mutation; Protons; Reproducibility of Results; Sequence Homology, Amino Acid; Structure-Activity Relationship; TRPV Cation Channels | 2016 |
Protective role of vanilloid receptor type 1 in HCl-induced gastric mucosal lesions in rats.
Effects of vanilloid-receptor agonists and antagonists on HCl-induced gastric lesions in rats were investigated to elucidate the role of vanilloid receptor type 1 (VR1) in gastric mucosal defense mechanisms.. Gastric lesions in rats were evaluated after intragastric administration of 0.6 N HCl. The localization of VR1 in the stomach was investigated immunohistochemically.. Intragastric administration of capsaicin inhibited the formation of gastric lesions in a dose-dependent manner (0.1-2.5 mg/kg). The functional VR1 antagonists ruthenium red and capsazepine markedly aggravated HCl-induced gastric lesions in rats. The gastroprotective effect of capsaicin was attenuated by ruthenium red or capsazepine. It is reported that resiniferatoxin, [6]-gingerol and lafutidine are compounds that activate VR1 and/or capsaicin-sensitive afferent neurons. These compounds significantly inhibited the formation of HCl-induced gastric lesions, and their gastroprotective effects were inhibited by treatment with ruthenium red. The immunohistochemical studies revealed that nerve fibers expressing VR1 exist along gastric glands in the mucosa, around blood vessels in the submucosa, in the myenteric plexus, and in the smooth muscle layers, especially the circular muscle layer.. The results of this study suggest that VR1 plays a protective role in the gastric defensive mechanism in rats. Topics: Acetamides; Animals; Anti-Ulcer Agents; Capsaicin; Catechols; Diterpenes; Famotidine; Fatty Alcohols; Gastric Mucosa; Hydrochloric Acid; Male; Piperidines; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, Drug; Stomach Ulcer | 2004 |