reserpine has been researched along with sr141716 in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (20.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Brotchie, JM; Crossman, AR; Maneuf, YP | 1 |
Bisogno, T; Brotchie, JM; Crossman, AR; Di Marzo, V; Hill, MP | 1 |
5 other study(ies) available for reserpine and sr141716
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
The cannabinoid receptor agonist WIN 55,212-2 reduces D2, but not D1, dopamine receptor-mediated alleviation of akinesia in the reserpine-treated rat model of Parkinson's disease.
Topics: Animals; Basal Ganglia; Benzazepines; Benzoxazines; Dopamine Agonists; gamma-Aminobutyric Acid; Locomotion; Male; Morpholines; Naphthalenes; Nerve Tissue Proteins; Parkinson Disease, Secondary; Piperidines; Pyrazoles; Quinpirole; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, Dopamine D1; Receptors, Dopamine D2; Receptors, Drug; Reserpine; Rimonabant | 1997 |
Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease.
Topics: Animals; Arachidonic Acids; Benzazepines; Cannabinoid Receptor Modulators; Cannabinoids; Dopamine Agonists; Endocannabinoids; Globus Pallidus; Glycerides; Humans; Male; Motor Activity; Parkinsonian Disorders; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Quinpirole; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, Drug; Reserpine; Rimonabant; Substantia Nigra; Tissue Distribution | 2000 |