reserpine has been researched along with rifampin in 17 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (5.88) | 18.7374 |
1990's | 2 (11.76) | 18.2507 |
2000's | 4 (23.53) | 29.6817 |
2010's | 9 (52.94) | 24.3611 |
2020's | 1 (5.88) | 2.80 |
Authors | Studies |
---|---|
Beck, WT; Schuetz, EG; Schuetz, JD | 1 |
Burk, O; Eichelbaum, M; Geick, A | 1 |
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM | 1 |
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M | 1 |
Aínsa, JA; Martín, C; Ramón-García, S; Thompson, CJ | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
García-Mera, X; González-Díaz, H; Prado-Prado, FJ | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Floyd, JL; Floyd, JT; Kumar, SH; Smith, KP; Varela, MF | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Delabio, LC; Dutra, JP; Hembecker, M; Kita, DH; Moure, VR; Pereira, GDS; Scheiffer, G; Valdameri, G; Zattoni, IF | 1 |
Floersheim, GL | 1 |
Piddock, LJ; Williams, KJ | 1 |
Gey van Pittius, NC; Grobbelaar, M; Hernandez-Pando, R; Jimenez, A; Leon, R; Louw, GE; McEvoy, CR; Murray, M; van Helden, PD; Victor, TC; Warren, RM | 1 |
2 review(s) available for reserpine and rifampin
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators.
Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; Breast Neoplasms; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Female; Humans; Neoplasm Proteins; Neoplastic Stem Cells | 2022 |
15 other study(ies) available for reserpine and rifampin
Article | Year |
---|---|
Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells.
Topics: Adenocarcinoma; ATP Binding Cassette Transporter, Subfamily B, Member 1; Base Sequence; Blotting, Northern; Cell Line; Clotrimazole; Colonic Neoplasms; Cytochrome P-450 CYP2E1; Cytochrome P-450 Enzyme System; Dexamethasone; DNA Primers; Doxorubicin; Gene Expression Regulation, Neoplastic; Humans; Midazolam; Mixed Function Oxygenases; Molecular Sequence Data; Multigene Family; Phenobarbital; Phenytoin; Polymerase Chain Reaction; Rifampin; Tumor Cells, Cultured; Verapamil | 1996 |
Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin.
Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; Base Sequence; Dimerization; DNA; DNA Primers; Gene Expression Regulation; Humans; Intestinal Mucosa; Intestines; Molecular Sequence Data; Pregnane X Receptor; Promoter Regions, Genetic; Receptors, Cytoplasmic and Nuclear; Receptors, Retinoic Acid; Receptors, Steroid; Retinoid X Receptors; Rifampin; Transcription Factors | 2001 |
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship | 2008 |
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship | 2008 |
Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth.
Topics: Antitubercular Agents; Bacterial Proteins; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Clofazimine; Dithiothreitol; Drug Resistance, Multiple, Bacterial; Gene Expression Regulation, Bacterial; Glutathione; Hydrogen Peroxide; Membrane Transport Proteins; Mutation; Mycobacterium tuberculosis; Oligonucleotide Array Sequence Analysis; Oxidative Stress; Rifampin; Valinomycin | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics | 2010 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus.
Topics: Amino Acid Sequence; Bacterial Proteins; Chloramphenicol; Drug Resistance, Multiple, Bacterial; Ethidium; Membrane Transport Proteins; Microbial Sensitivity Tests; Molecular Sequence Data; Onium Compounds; Organophosphorus Compounds; Phylogeny; Sequence Homology, Amino Acid; Sodium Dodecyl Sulfate; Staphylococcus aureus; Trimethoprim; Vancomycin | 2010 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Rifampicin and cysteamine protect against the mushroom toxin phalloidin.
Topics: Animals; Antitoxins; Chlortetracycline; Cysteamine; Cytochrome c Group; Erythromycin; Female; Guanidines; Lethal Dose 50; Liver; Mice; Mushroom Poisoning; Mycotoxins; Penicillin G; Phenylbutazone; Rats; Reserpine; Rifampin | 1974 |
Accumulation of rifampicin by Escherichia coli and Staphylococcus aureus.
Topics: Antibiotics, Antitubercular; Biological Transport; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Colony Count, Microbial; Dinitrophenols; Escherichia coli; Hydrogen-Ion Concentration; Kinetics; Reserpine; Rifampin; Staphylococcus aureus; Temperature | 1998 |
Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux.
Topics: Adrenergic Uptake Inhibitors; Animals; Anti-Bacterial Agents; Antibiotics, Antitubercular; Bacterial Proteins; Calcium Channel Blockers; Cell Culture Techniques; Disease Models, Animal; DNA-Directed RNA Polymerases; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Ofloxacin; Reserpine; Reverse Transcriptase Polymerase Chain Reaction; Rifampin; Tuberculosis, Multidrug-Resistant; Verapamil | 2011 |