Page last updated: 2024-08-17

reserpine and quercetin

reserpine has been researched along with quercetin in 14 studies

Research

Studies (14)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's7 (50.00)29.6817
2010's5 (35.71)24.3611
2020's2 (14.29)2.80

Authors

AuthorsStudies
Bacsó, Z; Cianfriglia, M; Fenyvesi, F; Goda, K; Kappelmayer, J; Lustyik, G; Nagy, H; Szabó, G; Szilasi, M1
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM1
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, J; Chen, W; Choudhry, N; Xu, D; Yang, Z; Zanin, M; Zhao, X1
Kulkarni, SK; Naidu, PS; Singh, A2
Girish, KS; Kemparaju, K1
Dey, D; Ghosh, S; Hazra, B; Ray, R1
Eliopoulos, E; Papakonstantinou, E; Thireou, T; Vlachakis, D; Vlachoyiannopoulos, PG1
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J1

Reviews

1 review(s) available for reserpine and quercetin

ArticleYear
Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
    Journal of medicinal chemistry, 2020, 11-25, Volume: 63, Issue:22

    Topics: Antiviral Agents; China; Coronavirus Protease Inhibitors; COVID-19; COVID-19 Drug Treatment; Drugs, Chinese Herbal; Humans; Medicine, Chinese Traditional; SARS-CoV-2; Small Molecule Libraries

2020

Other Studies

13 other study(ies) available for reserpine and quercetin

ArticleYear
Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies.
    Biochemical and biophysical research communications, 2004, Mar-19, Volume: 315, Issue:4

    Topics: Adenosine Triphosphatases; Animals; Anti-Bacterial Agents; Antibodies, Monoclonal; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Binding, Competitive; Calcium Channel Blockers; Cyclosporine; Detergents; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Flow Cytometry; Fluoresceins; Humans; Ivermectin; Mice; NIH 3T3 Cells; Substrate Specificity

2004
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
    Journal of medicinal chemistry, 2008, Jun-12, Volume: 51, Issue:11

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship

2008
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Quercetin potentiates L-Dopa reversal of drug-induced catalepsy in rats: possible COMT/MAO inhibition.
    Pharmacology, 2003, Volume: 68, Issue:2

    Topics: Animals; Antiparkinson Agents; Catalepsy; Catechol O-Methyltransferase Inhibitors; Levodopa; Male; Monoamine Oxidase Inhibitors; Perphenazine; Quercetin; Rats; Rats, Wistar; Reserpine

2003
Reversal of reserpine-induced orofacial dyskinesia and cognitive dysfunction by quercetin.
    Pharmacology, 2004, Volume: 70, Issue:2

    Topics: Animals; Antipsychotic Agents; Behavior, Animal; Blood Proteins; Catalase; Cognition Disorders; Dyskinesia, Drug-Induced; Glutathione; Lipid Peroxidation; Male; Malondialdehyde; Maze Learning; Quercetin; Rats; Reserpine; Superoxide Dismutase; Transfer, Psychology

2004
Inhibition of Naja naja venom hyaluronidase by plant-derived bioactive components and polysaccharides.
    Biochemistry. Biokhimiia, 2005, Volume: 70, Issue:8

    Topics: Alkaloids; Animals; Anti-Inflammatory Agents; Antioxidants; Chitosan; Curcumin; Dexamethasone; Dose-Response Relationship, Drug; Elapid Venoms; Elapidae; Flavonoids; Glycosaminoglycans; Hyaluronoglucosaminidase; Indomethacin; Plant Preparations; Polysaccharides; Quercetin; Reserpine

2005
Polyphenolic Secondary Metabolites Synergize the Activity of Commercial Antibiotics against Clinical Isolates of β-Lactamase-producing Klebsiella pneumoniae.
    Phytotherapy research : PTR, 2016, Volume: 30, Issue:2

    Topics: Anti-Bacterial Agents; Bacterial Proteins; beta-Lactamases; Caffeic Acids; Catechin; Ciprofloxacin; Drug Synergism; Ellagic Acid; Gentamicins; Klebsiella pneumoniae; Microbial Sensitivity Tests; Phytochemicals; Polyphenols; Quercetin; Reserpine; Tetracycline

2016
A Holistic Evolutionary and 3D Pharmacophore Modelling Study Provides Insights into the Metabolism, Function, and Substrate Selectivity of the Human Monocarboxylate Transporter 4 (hMCT4).
    International journal of molecular sciences, 2021, Mar-13, Volume: 22, Issue:6

    Topics: Animals; Antineoplastic Agents; Binding Sites; Biological Transport; Drug Design; Glycolysis; Humans; Lactic Acid; Molecular Docking Simulation; Monocarboxylic Acid Transporters; Muscle Proteins; Phloretin; Phylogeny; Protein Binding; Protein Conformation, alpha-Helical; Protein Interaction Domains and Motifs; Protein Isoforms; Pyrimidinones; Quercetin; Reserpine; Structural Homology, Protein; Substrate Specificity; Thiophenes; Uracil

2021
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
    Nature chemical biology, 2009, Volume: 5, Issue:10

    Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection

2009