Page last updated: 2024-08-17

reserpine and econazole

reserpine has been researched along with econazole in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (33.33)29.6817
2010's2 (66.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Aínsa, JA; Martín, C; Ramón-García, S; Thompson, CJ1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1

Other Studies

3 other study(ies) available for reserpine and econazole

ArticleYear
Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth.
    Antimicrobial agents and chemotherapy, 2009, Volume: 53, Issue:9

    Topics: Antitubercular Agents; Bacterial Proteins; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Clofazimine; Dithiothreitol; Drug Resistance, Multiple, Bacterial; Gene Expression Regulation, Bacterial; Glutathione; Hydrogen Peroxide; Membrane Transport Proteins; Mutation; Mycobacterium tuberculosis; Oligonucleotide Array Sequence Analysis; Oxidative Stress; Rifampin; Valinomycin

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012