ramiprilat and zofenopril

ramiprilat has been researched along with zofenopril* in 2 studies

Other Studies

2 other study(ies) available for ramiprilat and zofenopril

ArticleYear
Effects of zofenopril and ramipril on cough reflex responses in anesthetized and awake rabbits.
    Journal of cardiovascular pharmacology and therapeutics, 2010, Volume: 15, Issue:4

    Cough is the most common symptom reported by patients in a primary care setting and is one of the most frequent secondary effects recorded during treatment with angiotensin-converting enzyme (ACE) inhibitors. The aim of the current study was to analyze potential differences in cough induction between 2 structurally different ACE inhibitors, namely zofenopril, which has a sulphydryl moiety, and ramipril, which has a carboxyl moiety. The cough reflex was induced by chemical (citric acid) and/or mechanical stimulation of the tracheobronchial tree in awake and anesthetized rabbits. Intravenous injection of the active compounds of the 2 ACE inhibitors, zofenoprilat (288 nmol/kg) and ramiprilat (129 nmol/kg), caused similar hypotensive effects in anesthetized rabbits. None of the studied cough-related variables changed in response to ACE inhibitor administration, with the exception of the number of coughs. Ramiprilat, but not zofenoprilat, increased the cough response induced by both mechanical and chemical stimulation (1 mol/L citric acid aerosol) of the tracheobronchial tree. In awake animals, zofenoprilat- or vehicle-treated rabbits did not show any significant changes in the number of coughs induced by 1 mol/L citric acid aerosol compared to their respective basal values (from 15.2 ± 2.3 to 13.1 ± 1.3 and from 16.1 ± 4.9 to 15.8 ± 4.3, respectively). Conversely, ramiprilat resulted in a significant increase in the number of coughs (from 21.1 ± 2.6 to 34.9 ± 3.5; P < .01). These findings confirm that there are differences in the cough potentiation effect induced by different ACE inhibitors. The low rate of cough seen with zofenoprilat may be related to its ability to induce a lower accumulation of bradykinin and prostaglandins at the lung level.

    Topics: Anesthesia, Intravenous; Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Captopril; Citric Acid; Consciousness; Cough; Drug Evaluation, Preclinical; Injections, Intravenous; Male; Rabbits; Ramipril; Reflex

2010
Effects of different angiotensin-converting enzyme (ACE) inhibitors on ischemic isolated rat hearts: relationship between cardiac ACE inhibition and cardioprotection.
    The Journal of pharmacology and experimental therapeutics, 1991, Volume: 257, Issue:3

    We determined the relationship between cardiac angiotensin-converting enzyme (ACE) inhibition and anti-ischemic efficacy of several structurally different ACE inhibitors or their prodrug esters perfused through the isolated rat heart. Seven ACE inhibitors inhibited cardiac ACE to varying degrees due to differences in uptake during perfusion through nonischemic rat hearts. Zofenopril-sulfhydryl and fosinoprilic acid were the most effective of the free inhibitors. Among the prodrugs, zofenopril and S-benzoylcaptopril, hydrolyzed rapidly by cardiac esterase, were more effective than their component ACE-inhibitors, whereas fosinopril, ramipril and enalapril were poorly active. For studies in ischemic rat hearts, vehicle or drug treatment was initiated 10 min before a 25-min period of global ischemia and during a 30-min reperfusion period. Of five unesterified ACE inhibitors studied for anti-ischemic activity, only captopril and zofenopril-sulfhydryl were found to improve postischemic contractile function and reduce cell death in the isolated rat hearts. Fosinoprilic acid, ramiprilat and enalaprilat were not cardioprotective at high perfusion concentrations, despite the fact that nearly complete inhibition of cardiac ACE was achieved with all of the compounds studied. The S-benzoyl prodrugs of zofenopril-sulfhydryl and captopril were at least as potent as their component ACE inhibitors in reducing ischemic-reperfusion damage in the same model. Neither zofenopril nor captopril, however, had any effect on coronary flow before or after ischemia. Thus, it appears that the cardioprotective effects of zofenopril and captopril are independent of cardiac ACE inhibition or, at least, that ACE inhibition alone is not sufficient. Both captopril and zofenopril are sulfhydryl-containing compounds whereas the inactive compounds are not; and, thus, this group appears to be important in mediating their cardioprotective actions.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Captopril; Coronary Disease; Drug Stability; Enalaprilat; Fosinopril; Heart; In Vitro Techniques; Male; Myocardium; Organophosphorus Compounds; Prodrugs; Proline; Pyrroles; Ramipril; Rats; Rats, Inbred Strains; Sulfhydryl Compounds

1991