ramipril and phosphoramidon

ramipril has been researched along with phosphoramidon* in 4 studies

Other Studies

4 other study(ies) available for ramipril and phosphoramidon

ArticleYear
Kinin-mediated coronary nitric oxide production contributes to the therapeutic action of angiotensin-converting enzyme and neutral endopeptidase inhibitors and amlodipine in the treatment in heart failure.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 288, Issue:2

    Increasing evidence suggests that angiotensin-converting enzyme (ACE) inhibitors can increase vascular nitric oxide (NO) production. Recent studies have found that combined inhibition of ACE and neutral endopeptidase (NEP) may have a greater beneficial effect in the treatment of heart failure than inhibition of ACE alone. Amlodipine, a calcium channel antagonist, has also been reported to have a favorable effect in the treatment of patients with cardiac dysfunction. The purpose of this study was to determine whether and the extent to which all of these agents used in the treatment of heart failure stimulate vascular NO production. Heart failure was induced by rapid ventricular pacing in conscious dogs. Coronary microvessels were isolated from normal and failing dog hearts. Nitrite, the stable metabolite of NO, was measured by the Griess reaction. ACE and NEP inhibitors and amlodipine significantly increased nitrite production from coronary microvessels in both normal and failing dog hearts. However, nitrite release was reduced after heart failure. For instance, the highest concentration of enalaprilat, thiorphan, and amlodipine increased nitrite release from 85 +/- 4 to 156 +/- 9, 82 +/- 7 to 139 +/- 8, and 74 +/- 4 to 134 +/-10 pmol/mg (all *p <.01 versus control), respectively, in normal dog hearts. Nitrite release in response to the highest concentration of these two inhibitors and amlodipine was reduced by 41% and 31% and 32% (all #p <.01 versus normal), respectively, in microvessels after heart failure. The increase in nitrite induced by either ACE or NEP inhibitors or amlodipine was entirely abolished by Nw-nitro-L-arginine methyl ester, HOE 140 (a B2-kinin receptor antagonist), and dichloroisocoumarin (a serine protease inhibitor) in both groups. Our results indicate that: 1) there is an impaired endothelial NO production after pacing-induced heart failure; 2) both ACE and NEP are largely responsible for the metabolism of kinins and modulate canine coronary NO production in normal and failing heart; and 3) amlodipine releases NO even after heart failure and this may be partly responsible for the favorable effect of amlodipine in the treatment of heart failure. Thus, the restoration of reduced coronary vascular NO production may contribute to the beneficial effects of these agents in the treatment of heart failure.

    Topics: Amlodipine; Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin Receptor Antagonists; Coronary Vessels; Cysteine Proteinase Inhibitors; Dogs; Enalaprilat; Glycopeptides; Heart Failure; Kininogens; Kinins; Nitric Oxide; Protease Inhibitors; Ramipril; Receptor, Bradykinin B2; Thiorphan; Vasodilator Agents

1999
Identification of kallidin degrading enzymes in the isolated perfused rat heart.
    Japanese journal of pharmacology, 1999, Volume: 79, Issue:1

    Kallidin (KD) is an important vasoactive kinin whose physiological effects are strongly dependent on its degradation through local kininases. In the present study, we examined the spectrum of these enzymes and their contribution to KD degradation in isolated perfused rat hearts. By inhibiting angiotensin-converting enzyme (ACE), aminopeptidase M (APM) and neutral endopeptidase (NEP) with ramiprilat (0.25 microM), amastatin (40 microM) and phosphoramidon (1 microM), respectively, relative kininase activities were obtained. APM (44%) and ACE (35%) are the main KD degrading enzymes in rat heart; NEP (7%) plays a minor role. A participation of carboxypeptidase N (CPN) could not be found.

    Topics: Aminopeptidases; Angiotensin-Converting Enzyme Inhibitors; Animals; Anti-Bacterial Agents; Glycopeptides; In Vitro Techniques; Kallidin; Male; Myocardium; Neprilysin; Peptide Hydrolases; Peptides; Peptidyl-Dipeptidase A; Perfusion; Protease Inhibitors; Ramipril; Rats; Rats, Wistar

1999
Amlodipine promotes kinin-mediated nitric oxide production in coronary microvessels of failing human hearts.
    The American journal of cardiology, 1999, Aug-19, Volume: 84, Issue:4A

    Recently, we found that amlodipine can release nitric oxide (NO) from canine coronary microvessels, which raises the question of whether amlodipine can also promote coronary NO production in failing human hearts. The goal of this study was to define the effect of amlodipine on NO production in failing human hearts and to determine the role of kinins in the control of NO production induced by amlodipine. Six explanted human hearts with end-stage heart failure were obtained immediately at transplant surgery. Coronary microvessels were isolated as previously described, and nitrite, the stable metabolite of NO in aqueous solution, was measured using the Griess Reaction. Amlodipine (10(-10) to 10(-5) mol/L) significantly increased nitrite production in coronary microvessels in a dose-dependent manner. The increase in nitrite in response to the highest dose of amlodipine (79%) was similar in magnitude to either that of the angiotensin-converting enzyme inhibitor ramiprilat (74%) or the neutral endopeptidase inhibitors phosphoramidon (61%) and thiorphan (72%). Interestingly, the increase in nitrite production induced by amlodipine was entirely abolished by N(omega)-nitro-L-arginine methyl ester and also HOE-140 (a bradykinin-2 antagonist) and dichloroisocoumarin (a serine protease inhibitor that blocks kallikrein activity). These results indicate that amlodipine can promote coronary NO production in failing human hearts and that this effect is dependent on a kinin-mediated mechanism.

    Topics: Amlodipine; Angiotensin-Converting Enzyme Inhibitors; Bradykinin; Bradykinin Receptor Antagonists; Calcium Channel Blockers; Cardiac Output, Low; Coronary Vessels; Dose-Response Relationship, Drug; Glycopeptides; Humans; Metalloendopeptidases; Microcirculation; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitrites; Quinine; Ramipril; Serine Proteinase Inhibitors; Thiorphan

1999
Neutral endopeptidase and angiotensin-converting enzyme inhibitors increase nitric oxide production in isolated canine coronary microvessels by a kinin-dependent mechanism.
    Journal of cardiovascular pharmacology, 1998, Volume: 31, Issue:4

    Bradykinin is a substrate for both neutral endopeptidase 24.11 (NEP) and angiotensin-converting enzyme (ACE). Our previous studies showed that ACE inhibitors can stimulate nitric oxide production in coronary microvessels, which is mediated by local kinins. Whether inhibition of NEP also can affect local vascular NO production has not been established. To determine the role of NEP in the control of NO production, coronary microvessels were isolated from seven mongrel dogs. Two NEP inhibitors, phosphoramidon and thiorphan, and an ACE inhibitor, ramiprilat, were used. Nitrite, the metabolite of NO in aqueous solution, was measured by using the Griess reaction. Phosphoramidon and thiorphan (10(-6) M) increased nitrite production from 80 +/- 6 to 136 +/- 6 and 144 +/- 7 pmol/mg, respectively. Ramiprilat (10(-8) M) increased nitrite production from 78 +/- 6 to 155 +/- 7 pmol/mg wet weight. The effect of these agents on nitrite release was blocked by L-NAME, which inhibits NO synthase, HOE-140, which blocks bradykinin B2-receptor, and dichloroisocoumarin, which blocks kinin-forming enzymes. These results clearly indicate that inhibition of kinin metabolism by using neutral endopeptidase inhibitors increases NO production from coronary microvessels. Thus neutral endopeptidase plays an important role in local kinin-modulated NO production in the coronary microcirculation and NEP inhibitors may be useful clinical tools in treatment of cardiovascular disease.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Bradykinin Receptor Antagonists; Coronary Vessels; Coumarins; Dogs; Drug Interactions; Glycopeptides; In Vitro Techniques; Isocoumarins; Neprilysin; NG-Nitroarginine Methyl Ester; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Protease Inhibitors; Ramipril; Serine Proteinase Inhibitors; Thiorphan

1998