raffinose has been researched along with isomaltulose* in 4 studies
1 review(s) available for raffinose and isomaltulose
Article | Year |
---|---|
Carbohydrate transformations by immobilized cells.
Topics: Adsorption; Aldose-Ketose Isomerases; Biotransformation; Carbohydrate Epimerases; Carbohydrate Metabolism; Fermentation; Hydrolysis; Isomaltose; Microbiological Techniques; Raffinose; Solubility | 1983 |
3 other study(ies) available for raffinose and isomaltulose
Article | Year |
---|---|
Effects of Mono-, Di-, and Tri-Saccharides on the Stability and Crystallization of Amorphous Sucrose.
Amorphous sucrose is a component of many food products but is prone to crystallize over time, thereby altering product quality and limiting shelf-life. A systematic investigation was conducted to determine the effects of two monosaccharides (glucose and fructose), five disaccharides (lactose, maltose, trehalose, isomaltulose, and cellobiose), and two trisaccharides (maltotriose and raffinose) on the stability of amorphous sucrose in lyophilized two-component sucrose-saccharide blends exposed to different relative humidity (RH) and temperature environmental conditions relevant for food product storage. Analyses included X-ray diffraction, differential scanning calorimetry, microscopy, and moisture content determination, as well as crystal structure overlays. All lyophiles were initially amorphous, but during storage the presence of an additional saccharide tended to delay sucrose crystallization. All samples remained amorphous when stored at 11% and 23% RH at 22 °C, but increasing the RH to 33% RH and/or increasing the temperature to 40 °C resulted in variations in crystallization onset times. Monosaccharide additives were less effective sucrose crystallization inhibitors relative to di- and tri-saccharides. Within the group of di- and tri-saccharides, effectiveness depended on the specific saccharide added, and no clear trends were observed with saccharide molecular weight and other commonly studied factors such as system glass transition temperature. Molecular level interactions, as evident in crystal structure overlays of the added saccharides and sucrose and morphological differences in crystals formed, appeared to contribute to the effectiveness of a di- or tri-saccharide in delaying sucrose crystallization. In conclusion, several di- and tri-saccharides show promise for use as additives to delay the crystallization kinetics of amorphous sucrose during storage at moderate temperatures and low RH conditions. PRACTICAL APPLICATION: Amorphous sucrose is desirable in a variety of food products, wherein crystallization can be problematic for texture and shelf-life. This study documents how different mono-, di-, and tri-saccharides influence the crystallization of sucrose. Monosaccharide additives were less effective sucrose crystallization inhibitors relative to di- and tri-saccharides. These findings increase the understanding of how different mono-, di-, and tri-saccharide structures and their solid-state properties influence the crystallization of amorp Topics: Calorimetry, Differential Scanning; Cellobiose; Crystallization; Food Analysis; Isomaltose; Lactose; Maltose; Microscopy, Electron, Scanning; Molecular Structure; Polysaccharides; Raffinose; Sucrose; Transition Temperature; Trehalose; Trisaccharides; Viscosity; X-Ray Diffraction | 2018 |
Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM.
The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β-linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. Topics: ATP-Binding Cassette Transporters; Cellobiose; Gene Expression Regulation, Bacterial; Glucans; Isomaltose; Lactobacillus acidophilus; Oligosaccharides; Phosphoenolpyruvate Sugar Phosphotransferase System; Prebiotics; Raffinose; Sugar Alcohols | 2012 |
Responses of the ant Lasius niger to various compounds perceived as sweet in humans: a structure-activity relationship study.
A behavioural study on the ant Lasius niger was performed by observing its feeding responses to 85 compounds presented in a two-choice situation (tested compound versus water control or sucrose solution). Among these compounds, only 21 were phagostimulating: six monosaccharides (D-glucose, 6-deoxy-D-glucose, L-galactose, L-fucose, D-fructose, L-sorbose), four derivatives of D-glucose (methyl alpha-D-glucoside, D-gluconolactone and 6-chloro- and 6-fluoro-deoxy-D-glucose), five disaccharides (sucrose, maltose, palatinose, turanose and isomaltose), one polyol glycoside (maltitol), three trisaccharides (melezitose, raffinose and maltotriose) and two polyols (sorbitol and L-iditol). None of the 16 non-carbohydrate non-polyol compounds tested, although perceived as sweet in humans, was found to be active in ants. The molar order of effectiveness of the major naturally occuring compounds (melezitose > sucrose = raffinose > D-glucose > D-fructose = maltose = sorbitol) is basically different from the molar order of their sweetness potency in humans (sucrose > D-fructose > melezitose > maltose > D-glucose = raffinose = sorbitol). On a molar basis melezitose is in L. niger about twice as effective as sucrose or raffinose, while D-glucose and D-fructose are three and four times less effective, respectively, than sucrose or raffinose. From a structure-activity relationship study it was inferred that the active monosaccharides and polyols should interact with the ant receptor through only one type of receptor, through the same binding pocket and the same binding residues, via a six-point interaction. The high effectiveness of melezitose in L. niger mirrors the feeding habits of these ants, which attend homopterans and are heavy feeders on their honeydew, which is very rich in this carbohydrate. Topics: Animals; Ants; Deoxyglucose; Disaccharides; Fructose; Fucose; Galactose; Glucose; Humans; Isomaltose; Maltose; Models, Chemical; Raffinose; Sorbitol; Sorbose; Structure-Activity Relationship; Sugar Alcohols; Taste; Trisaccharides | 2001 |