raffinose and 2-aminoisobutyric-acid

raffinose has been researched along with 2-aminoisobutyric-acid* in 2 studies

Other Studies

2 other study(ies) available for raffinose and 2-aminoisobutyric-acid

ArticleYear
Thiazolidine derivatives ameliorate high glucose-induced insulin resistance via the normalization of protein-tyrosine phosphatase activities.
    The Journal of biological chemistry, 1995, Mar-31, Volume: 270, Issue:13

    The mechanisms for the insulin resistance induced by hyperglycemia were investigated by studying the effect of high glucose concentration (HG) and its modulation by thiazolidine derivatives, on insulin signaling using Rat 1 fibroblasts expressing human insulin receptors (HIRc). Incubating HIRc cells in 27 mM D-glucose for 4 days impaired the insulin-stimulated phosphorylation of pp185 and receptor beta-subunits. Both protein kinase C activities and phorbol dibutyrate binding to intact cells were unchanged; however, cytosolic protein-tyrosine phosphatase (PTPase) activity increased within 1 h prior to the impairment of insulin receptor kinase in HG cells (Maegawa, H., Tachikawa-Ide, R., Ugi, S., Iwanishi, M., Egawa, K., Kikkawa, R., Shigeta, Y., and Kashiwagi, A. (1993) Biochem. Biophys. Res. Commun. 197, 1078-1082). Increased PTPase activity was consistent with a 2-fold increase in the amount of PTP1B, and anti-PTP1B antibody inhibited this increment of cytosolic PTPase activity in HG cells. Co-incubating cells with pioglitazone prevented these abnormalities in cytosolic PTPase, the PTP1B content and the impaired phosphorylation of pp185 and receptor beta subunits in HG cells. Finally, HG cells had impaired insulin-stimulated alpha-amino-isobutyric acid uptake, which was ameliorated by exposure to thiazolidine derivatives. In conclusion, exposing cells to high glucose levels desensitizes insulin receptor function, and thiazolidine derivatives can reverse the process via the normalization of cytosolic PTPase, but not of protein kinase C.

    Topics: Aminoisobutyric Acids; Animals; Biological Transport; Blotting, Western; Cell Line; Cytosol; Glucose; Humans; Hypoglycemic Agents; Insulin; Insulin Resistance; Kinetics; Macromolecular Substances; Phosphotyrosine; Pioglitazone; Protein Tyrosine Phosphatases; Raffinose; Rats; Receptor, Insulin; Recombinant Proteins; Swine; Thiazoles; Thiazolidinediones; Transfection; Tyrosine

1995
Swelling of rat hepatocytes stimulates glycogen synthesis.
    The Journal of biological chemistry, 1990, Jan-15, Volume: 265, Issue:2

    In hepatocytes from fasted rats, several amino acids are known to stimulate glycogen synthesis via activation of glycogen synthase. The hypothesis that an increase in cell volume resulting from amino acid uptake may be involved in the stimulation of glycogen synthesis is supported by the following observations. 1) The extent of stimulation of glycogen synthesis by both metabolizable and nonmetabolizable amino acids was directly proportional to their ability to increase cell volume, except for proline, which stimulated glycogen synthesis more than could be accounted for by the increase in cell volume. 2) Both cell swelling and stimulation of glycogen synthesis by amino acids were prevented when hepatocytes were incubated in hyperosmotic media containing sucrose or raffinose. 3) Increasing the cell volume by incubating hepatocytes in Na(+)-depleted media in the absence of amino acids also stimulated glycogen synthesis. 4) Stimulation of glycogen synthesis by Na+ depletion was prevented by restoring the normal osmolarity with sucrose, but not with choline chloride which, by itself, stimulated glycogen synthesis and increased the cell volume. It is concluded that stimulation of glycogen synthesis by amino acids is due, at least in part, to an increase in hepatocyte volume resulting from amino acid uptake, and that hepatocyte swelling per se stimulates glycogen synthesis.

    Topics: Alanine; Aminoisobutyric Acids; Animals; Asparagine; Glutamine; In Vitro Techniques; Liver; Liver Glycogen; Organ Size; Osmolar Concentration; Proline; Raffinose; Rats; Sucrose

1990