quisqualic acid has been researched along with nitrendipine in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (66.67) | 18.2507 |
2000's | 1 (33.33) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Alonso, R; Boksa, P; Chaudieu, I; Mount, H; Quirion, R | 1 |
Challiss, RA; Nahorski, SR | 1 |
3 other study(ies) available for quisqualic acid and nitrendipine
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Effects of L- and N-type Ca2+ channel antagonists on excitatory amino acid-evoked dopamine release.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Calcium Channel Blockers; Cells, Cultured; Dopamine; Kainic Acid; Mesencephalon; N-Methylaspartate; Nitrendipine; omega-Conotoxin GVIA; Peptides, Cyclic; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Veratridine | 1992 |
Depolarization and agonist-stimulated changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulation in rat cerebral cortex.
Topics: Animals; Calcium Channel Blockers; Carbachol; Cerebral Cortex; Inositol 1,4,5-Trisphosphate; Inositol Phosphates; Membrane Potentials; Nitrendipine; Norepinephrine; Physostigmine; Potassium; Quisqualic Acid; Rats; Receptors, Muscarinic | 1991 |