quisqualic acid has been researched along with n-methylaspartate in 565 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 214 (37.88) | 18.7374 |
1990's | 334 (59.12) | 18.2507 |
2000's | 15 (2.65) | 29.6817 |
2010's | 2 (0.35) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Curry, K; Magnuson, DS; McLennan, H; Peet, MJ | 3 |
Bräuner-Osborne, H; Egebjerg, J; Krogsgaard-Larsen, P; Madsen, U; Nielsen, EO | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Davies, J; Evans, RH; Francis, AA; Watkins, JC | 1 |
Bloms, P; Madeja, M; Musshoff, U; Speckmann, EJ | 1 |
Beninger, RJ; Boegman, RJ; Cockhill, J; Jhamandas, K | 1 |
Maruyama, M; Nakazawa, M; Takeda, K | 1 |
Osborne, NN; Quack, G | 1 |
Engberg, G; Hajós, M | 2 |
Nomura, Y; Tohda, M; Urushihara, H | 1 |
Li, M; Ryan, R; Wood, PL | 2 |
Chen, CK; Johnston, MV; Silverstein, FS | 1 |
Johnson, SW; North, RA; Seutin, V | 1 |
Bear, MF; Bohner, AP; Dudek, SM | 1 |
Jensen, TS; Yaksh, TL | 1 |
Lasoń, W; Przewłocka, B; Przewłocki, R | 1 |
Asprodini, EK; Rainnie, DG; Shinnick-Gallagher, P | 1 |
Di Loreto, S; Florio, T; Scarnati, E | 1 |
Davidoff, RA; Hackman, JC; Holohean, AM; Shope, SB | 1 |
Akoev, GN; Andrianov, GN; Ryzhova, IV; Sherman, NO | 1 |
Cornell-Bell, AH; Finkbeiner, SM; van den Pol, AN | 1 |
Cai, Z; McCaslin, PP | 2 |
Amano, T; Hishinuma, F; Kuwahara, R; Okabe, N; Ozawa, F; Yamakuni, T | 1 |
Buchwald, NA; Cepeda, C; Levine, MS; Peacock, W; Radisavljevic, Z | 1 |
Erdö, SL; Schäfer, M | 1 |
Rekling, JC | 1 |
Chuang, DM; Gao, XM; Paul, SM | 1 |
Abe, K; Saito, H | 1 |
Lanius, RA; Shaw, C | 2 |
Darles, G; Graham, D; Langer, SZ | 1 |
McCaslin, PP; Yu, XZ | 1 |
Chergui, K; Chouvet, G; Gonon, F; Suaud-Chagny, MF | 1 |
Hamada, T; Shibata, S; Tominaga, K; Watanabe, S | 1 |
Cumberbatch, M; King, AE; Lopez-Garcia, JA | 1 |
Henry, JL; Hong, Y | 1 |
Besser, GM; Costa, A; Forsling, ML; Grossman, A; Hucks, D; Yasin, SA | 1 |
Holopainen, I; Janáky, R; Oja, SS; Saransaari, P; Varga, V | 1 |
Cazalets, JR; Clarac, F; Sqalli-Houssaini, Y | 1 |
Costa, E; Kiedrowski, L; Wroblewski, JT | 1 |
Pittaluga, A; Raiteri, M | 1 |
Garrone, B; Pittaluga, A; Raiteri, M | 1 |
Andersen, CF; Frandsen, A; Schousboe, A | 1 |
Fain, GL; Yazejian, B | 1 |
Frandsen, A; Schousboe, A | 1 |
Kawai, N; Nakajima, T; Robinson, HP; Shimazaki, K; Takenawa, T | 1 |
Balázs, R; Hack, N; Kumar, KN; Michaelis, E; Resink, A; Van der Valk, JB | 1 |
Johnston, MV; McDonald, JW; Trescher, WH | 1 |
Dutton, GR; Rogers, KL | 1 |
Randic, M; Rusin, KI; Ryu, PD | 1 |
Davies, JA; Dickie, BG; Lewis, MJ | 1 |
Alonso, R; Boksa, P; Chaudieu, I; Mount, H; Quirion, R | 1 |
Deĭko, LI; Petrov, VI; Sazhin, VA | 1 |
de Montigny, C; Debonnel, G; Fournier, A; Monnet, FP | 1 |
Eysel, UT; Funke, K | 1 |
de Montigny, C; Debonnel, G; Monnet, FP | 3 |
DeFeo, PA; Hargrove, H; Patel, J; Salama, AI; Thompson, C; Zinkand, WC | 1 |
Mathis, C; Ungerer, A | 1 |
Ho, IK; McCaslin, PP; Smith, TG; Yu, XZ | 1 |
Brady, RJ; Smith, KL; Swann, JW | 1 |
Denavit-Saubie, M; Foutz, AS; Pierrefiche, O; Schmid, K | 1 |
Courtney, MJ; Nicholls, DG | 1 |
Smith, SS | 3 |
Jones, MG; Lodge, D; Palmer, AJ | 1 |
Horikoshi, T; Inoue, K; Ito, E; Kudo, Y; Miyazawa, A; Nakamura, T; Takagi, H; Umeda, M; Yanagisawa, K; Yoshioka, T | 1 |
Michelson, H; Miles, R; Traub, RD; Wong, RK | 1 |
Akaike, N; Ikemoto, Y; Wakamori, M | 1 |
Markram, H; Richter-Levin, G; Segal, M | 1 |
MacDermott, AB; Reichling, DB | 2 |
Blazynski, C; Linn, DM; Massey, SC; Redburn, DA | 1 |
Akaike, N; Ito, C; Wakamori, M | 1 |
Aquila, WJ; Petroff, OA; Yates, J; Young, RS | 1 |
Katz, LC; Yuste, R | 1 |
Blake, JF; Brown, MW; Collingridge, GL; Frenguelli, BG | 1 |
Jhamandas, K; Ruzicka, BB | 2 |
Houk, JC; Keifer, J | 1 |
Akaike, N; Komune, S; Nakagawa, T; Uemura, T | 1 |
Arancio, O; MacDermott, AB | 1 |
Nakagawa, S; Nakamura, H; Noda, T; Saheki, T; Yada, T | 1 |
Dougherty, PM; Willis, WD | 1 |
Garcia-Ladona, FJ; Girard, C; Gombos, G; Palacios, JM | 1 |
Bandopadhyay, R; de Belleroche, J | 1 |
Clark, AJ; Hastings, MH; Latimer, M; Stone, TW; Winn, P | 1 |
Sapru, H; Sundaram, K | 1 |
Hatziefthimiou, A; Kouvelas, ED; Mitsacos, A; Mitsaki, E; Plaitakis, A | 1 |
Carter, AJ; Müller, RE | 1 |
Gannon, RL; Terrian, DM | 1 |
Lai, YY; Siegel, JM | 1 |
Cline, HT; Constantine-Paton, M; Debski, EA; McDonald, JW | 1 |
Eysel, UT; FitzGibbon, T; Funke, K | 1 |
Cubero, A; González-Calero, G; Martín, M | 1 |
Onodera, K; Takeuchi, A | 1 |
Akerman, KE; Holopainen, I; Louve, M | 1 |
Delrée, P; Lefebvre, PP; Leprince, P; Moonen, G; Rigo, JM; Rogister, B; Weber, T | 1 |
Ham, J; Rickards, C; Scanlon, M | 1 |
Schmidt, M | 1 |
Abe, M; Iino, M; Ozawa, S | 1 |
Paton, JF; Rogers, WT; Schwaber, JS | 1 |
Bagust, J; Gardner, CR; Hussain, S; Walker, RJ | 1 |
Oja, SS; Saransaari, P | 4 |
Li, J; Smith, SS | 1 |
Olney, JW; Pathikonda, M; Snider, WD; Stewart, GR | 1 |
Jean, A; Kessler, JP | 1 |
Agrawal, AK; Murthy, CR; Rao, VL | 1 |
Cai, NS; Erdö, SL; Kiss, B | 1 |
Billard, JM; Daniel, H; Pumain, R | 1 |
Albuquerque, EX; Alkondon, M; Aronstam, RS; Costa, AC; Radhakrishnan, V | 1 |
Lanthorn, TH; Monaghan, DT; Watson, GB | 1 |
Brackley, P; Goodnow, R; Nakanishi, K; Sudan, HL; Usherwood, PN | 1 |
Dichter, M; Morad, M; Tang, CM | 1 |
Finch, DM; Fisher, RS; Jackson, MB | 1 |
Daló, NL; Larson, AA | 1 |
McMillian, M; Miller, LG; Schatzki, A | 1 |
Van der Valk, JB; Vijverberg, HP | 1 |
Larson, AA; Skilling, SR; Smullin, DH | 1 |
Cline, HT; Tsien, RW | 1 |
Hećimović, H; Randić, M; Ryu, PD | 1 |
Fowler, CJ; Tiger, G | 1 |
Mayer, ML | 1 |
Krůsek, J; Vlachová, V; Vyklický, L | 1 |
Guilarte, TR | 1 |
Lovinger, DM; Peoples, RW; Weight, FF; White, G | 1 |
Colquhoun, D; Cull-Candy, SG; Howe, JR | 1 |
Kline, PA; Nowak, LM; Wright, JM | 1 |
Akeson, RL; Pruss, RM; Racke, MM; Wilburn, JL | 1 |
Larson, AA; Sun, XF | 1 |
Braquet, P; Chabrier, PE; Demerlé-Pallardy, C; Lonchampt, MO | 1 |
Franke, C; Hatt, H; Rosenheimer, JL; Smith, DO; Zufall, F | 1 |
Arancio, O; MacDermott, AB; Murase, K; Yoshimura, M | 2 |
Lovinger, DM; Weight, FF; White, G | 2 |
Adler, H; Albert, DM; Konrad-Rastegar, J; Lessell, S; McGee, TL; Sahel, JA | 1 |
Corden, M; Curry, K; McLennan, H | 1 |
Leander, JD; Ornstein, PL; Salhoff, CR; Schoepp, DD | 1 |
Addae, JI; Bartrup, JT; Stone, TW | 1 |
Larson, J; Lynch, G | 1 |
Erdö, S; Michler, A; Wolff, JR | 1 |
Budson, AE; Jackson, PS; Lipton, SA | 1 |
Beitz, AJ; Koerner, JF; Larson, AA; Magnusson, KR; Skilling, SR; Smullin, DH | 1 |
Beal, MF; Finn, SF; Swartz, KJ | 1 |
Ito, E; Kudo, Y; Ogura, A | 1 |
Bell, JA; London, ED; Majewska, MD | 1 |
Ciuffo, GM; Estrada, MR; Jáuregui, EA; Rodríguez, AM | 1 |
Church, J; Lodge, D | 1 |
Grudt, TJ; Jahr, CE | 1 |
Glaum, SR; Miller, RJ; Scholz, WK | 1 |
Cox, JA; Felder, CC; Henneberry, RC | 1 |
Nistri, A; Sivilotti, L; Welsh, DM | 1 |
Bockaert, J; Dumuis, A; Oomagari, K; Pin, JP; Sebben, M | 1 |
Raigorodsky, G; Urca, G | 2 |
Evans, RH; Long, SK; Siarey, RJ; Smith, DA | 1 |
DiFiglia, M; Freese, A; Koroshetz, WJ | 1 |
Ishida, M; Ishihara, T; Nakagawa, Y; Saitoh, K; Shinozaki, H | 1 |
Beart, PM; Lodge, D | 1 |
Drewe, JA; Kunze, DL; Miles, R | 1 |
Dudek, FE; van den Pol, AN; Wuarin, JP | 1 |
Erdö, SL; Michler, A; Tytko, H; Wolff, JR | 1 |
Hablitz, JJ; Sutor, B | 1 |
Heinemann, U; Mudrick, LA | 1 |
Nicholson, C; Rice, ME | 1 |
Brodfuehrer, PD; Cohen, AH | 1 |
McMillian, M; Miller, LG; Pritchard, GA | 1 |
Urca, G; Urca, R | 1 |
Boos, R; Müller, F; Wässle, H | 1 |
Catalin, D; Cherkaoui, N; Jean, A; Kessler, JP | 1 |
Dauth, GW; Gilman, S; Hollingsworth, Z; Kaatz, K; Penney, JB; Young, AB | 1 |
Jean, A; Tell, F | 1 |
Cler, JA; Emmett, MR; Iyengar, S; Mick, SJ; Rao, TS; Wood, PL | 1 |
Hoehn, K; White, TD | 1 |
Thomson, AM | 1 |
Baraban, JM; Murphy, TH | 1 |
Hunt, A; Patel, AJ; Sanfeliu, C | 1 |
Markram, H; Segal, M | 1 |
Anis, NA; Jones, MG; Lodge, D | 1 |
Niemann, W; Stephens, DN; Turski, L | 1 |
Pranzatelli, MR | 1 |
De Barry, J; Mathis, C; Ungerer, A | 1 |
Fiedler, J; Orrego, F; Villanueva, S | 1 |
Akaike, N; Murase, K; Nakagawa, T; Randic, M; Shirasaki, T | 1 |
Akita, K; Kudo, Y; Mikoshiba, K; Miyawaki, A; Yuzaki, M | 1 |
Cotman, CW; Krause, JD; Nangel-Taylor, K; Palmer, E; Roxas, A | 1 |
Ikeda, H; Kay, CD; Robbins, J | 2 |
Colpaert, FC; Koek, W | 1 |
Costa, E; Eimerl, S; Schramm, M | 1 |
Hansen, AJ; Honoré, T; Jacobsen, P; Nielsen, EO; Sheardown, MJ | 1 |
Dutton, GR; Philibert, RA; Rogers, KL | 1 |
Osborne, NN | 1 |
Keith, RA; Klika, AB; Mangano, TJ; Patel, J; Salama, AI; Zinkand, WC | 1 |
Boksa, P; Kohn-Alexander, J; Mount, H; Quirion, R | 1 |
De Montigny, C; Debonnel, G; Junien, JL; Monnet, FP | 1 |
Berrino, L; Loffreda, A; Maione, S; Marmo, E; Matera, MG; Vitagliano, S | 1 |
Courtney, MJ; Lambert, JJ; Nicholls, DG | 1 |
Masetto, S; Prigioni, I; Russo, G; Valli, P | 1 |
Ballanyi, K; Dörner, R; Schlue, WR | 1 |
Akaike, N; Fukuda, A; Nakagawa, T; Shirasaki, T; Wakamori, M | 1 |
Balázs, R; Hack, N; Jørgensen, OS | 1 |
Honoré, T; Imperato, A; Jensen, LH | 1 |
Akerman, KE; Holopainen, I | 1 |
Akita, K; Kudo, Y; Ogura, A | 1 |
Herreras, O; Martín del Río, R; Menéndez, N; Sánchez Herranz, A; Solís, JM | 1 |
Godfraind, JM | 1 |
Barolet, AW; Baskys, A; Bernstein, NK; Carlen, PL | 1 |
Erdö, SL; Michler, A | 1 |
Heinemann, U; Stabel, J; Wisskirchen, T | 1 |
Cardona, D; Chen, R; Hudson, C; Johnston, MV; McDonald, JW; Silverstein, FS | 1 |
Logan, SD; Spanswick, D | 1 |
Baimbridge, KG; el-Beheiry, H; Puil, E | 1 |
Marchenko, SM | 1 |
Bernardi, G; Calabresi, P; De Murtas, M; Mercuri, NB | 1 |
Iino, M; Ozawa, S; Tsuzuki, K | 1 |
Carpenter, DO; Ffrench-Mullen, JM; Hori, N | 2 |
Michl, J; Ujec, E; Vlachová, V; Vyklický, L; Vyskocil, F | 1 |
Aanonsen, LM; Wilcox, GL | 3 |
Fischbach, GD; O'Brien, RJ | 1 |
Jordan, W; Sutor, B; Zieglgänsberger, W | 1 |
Cherubini, E; King, AE; Nistri, A | 1 |
Bean, BP; Huettner, JE | 1 |
Cull-Candy, SG; Howe, JR; Ogden, DC | 1 |
Bennett, MV; Kushner, L; Lerma, J; Zukin, RS | 1 |
Garthwaite, G; Garthwaite, J | 4 |
Gruol, DL; Joels, M; Yool, AJ | 1 |
Cull-Candy, SG; Gallo, V; Usowicz, MM | 1 |
Murase, K; Randic, M; Ryu, PD | 1 |
Kuhn, D; Mayer, ML; Sernagor, E; Vyklicky, L | 1 |
Ehrlich, D; Sattayasai, J; Zappia, J | 1 |
Jope, RS; Li, X | 1 |
Alho, H; Barbaccia, ML; Costa, E; Szekely, AM | 1 |
Backus, KH; Kettenmann, H; Schachner, M | 1 |
Salt, TE | 1 |
Ross, SM; Roy, DN; Spencer, PS | 1 |
Iwasaki, M | 1 |
Cotman, CW; Monaghan, DT; Palmer, E | 2 |
Buckley, KS; Collins, GG | 1 |
Barish, ME; Sands, SB | 1 |
de Montigny, C; Debonnel, G; Weiss, M | 1 |
Caspary, DM; Faingold, CL | 1 |
Bauce, L; Kemp, DE; Weiss, S | 1 |
Ito, I; Sugiyama, H; Watanabe, M | 1 |
McCaslin, PP; Morgan, WW | 2 |
Fonnum, F; Syvertsen, C | 1 |
Araneda, R; Bustos, G | 1 |
Clow, DW; Jhamandas, K | 1 |
O'Dell, TJ | 1 |
Ogita, K; Yoneda, Y | 2 |
Guiramand, J; Nourigat, A; Recasens, M; Sassetti, I | 1 |
Blake, JF; Brown, MW; Collingridge, GL; Yates, RG | 1 |
Brugger, F; Olpe, HR; Pozza, MF; Steinmann, MW | 1 |
Baba, A; Iwata, H; Kihara, T; Sawada, T | 1 |
Chapman, B; Miller, KD; Stryker, MP | 1 |
King, AE; Thompson, SW | 1 |
Ben-Ari, Y; Represa, A; Tremblay, E | 1 |
Crépel, F; Hicks, TP; Krupa, M | 1 |
Akoev, GN; Andrianov, IuN; Bromm, B; Sabo, T; Sherman, NO | 1 |
Guiramand, J; Recasens, M; Sassetti, I | 1 |
Herranz, AS; Herreras, O; Martín del Río, R; Menéndez, N; Solis, JM | 1 |
Miyachi, E; Murakami, M | 1 |
Dubinsky, JM; Rothman, SM; Yamada, KA | 1 |
Anis, NA; Eldefrawi, AT; Eldefrawi, ME; Gant, DB; Konno, K; Miledi, R; Ragsdale, D | 1 |
Johnson, BG; Schoepp, DD | 1 |
Bieger, D; Hashim, MA | 1 |
Dye, J; Heiligenberg, W; Kawasaki, M; Keller, CH | 1 |
Bredt, DS; Snyder, SH | 1 |
Hornfeldt, CS; Larson, AA | 1 |
Arenson, MS; Nistri, A | 1 |
Arenson, MS; King, A; Nistri, A | 1 |
Aryanpur, JJ; Cole, AE; Eccles, CU; Fisher, RS | 1 |
Bingmann, D; Speckmann, EJ; Walden, J | 1 |
Barrington, M; Ehrlich, D; Sattayasai, J; Zappia, J | 1 |
Jones, MW; Kilpatrick, IC; Phillipson, OT | 1 |
Talman, WT | 1 |
Johnston, MV; McDonald, JW; Silverstein, FS; Uckele, J | 1 |
Bustos, G; Rudolph, MI | 1 |
Okamoto, K; Sakai, Y; Sekiguchi, M | 1 |
Drejer, J; Honoré, T | 1 |
Champagnat, J; Denavit-Saubié, M; Foutz, AS | 1 |
Heinemann, U; Köhr, G | 1 |
Jacquet, YF; Squires, RF | 1 |
Jacquet, YF | 1 |
Meldrum, BS; Millan, MH; Patel, S | 1 |
Harrison, NL; Simmonds, MA | 1 |
Christensen, BN; Hals, G; Shingai, R | 1 |
Collins, JF; Meldrum, BS; Turski, L | 1 |
Homma, S | 1 |
Goldberg, O; Teichberg, VI | 2 |
Davies, J; Quinlan, JE | 1 |
Baba, A; Iwata, H; Morimoto, H | 1 |
Lodge, D; Martin, D | 1 |
Hablitz, JJ | 1 |
Martin, MR | 2 |
Campochiaro, P; Coyle, JT; Ferkany, JW | 1 |
Baudry, M; Cummins, JT; Kessler, M; Lynch, G; Way, S | 1 |
Gregersen, H; McLennan, H; Peet, MJ | 1 |
Drejer, J; Honoré, T; Meier, E; Schousboe, A | 1 |
Jürgens, U; Richter, K | 1 |
Crepel, F; Gardette, R | 1 |
Bobbin, RP; Jenison, GL; Winbery, S | 1 |
Choi, DW; Koh, JY; Peters, S | 2 |
King, AE; Nistri, A | 1 |
Costa, E; Nicoletti, F; Wroblewski, JT | 1 |
Ballanyi, K; Endres, W; Grafe, P; Serve, G | 1 |
Mayer, ML; Westbrook, GL | 2 |
Choi, DW; Koh, J; Peters, S | 1 |
Cherniack, NS; Mitra, J; Overholt, JL; Prabhakar, NR | 1 |
Crepel, F; Dupont, JL; Gardette, R | 2 |
Drejer, J; Honoré, T; Schousboe, A | 1 |
Morgan, IG | 1 |
Bockaert, J; Kemp, DE; Schmidt, BH; Sebben, M; Sladeczek, F; Weiss, S | 1 |
Cotman, CW; Harris, EW; Stevens, DR | 1 |
Grantyn, R; Hablitz, JJ; Lux, HD; Perouansky, M | 1 |
Burton, NR; Smith, DA; Stone, TW | 1 |
Greenamyre, JT; Olson, JM; Penney, JB; Young, AB | 2 |
Benavides, J; Carter, C; Fage, D; Scatton, B | 1 |
Alho, H; Costa, E; Eva, C; Fadda, E; Nicoletti, F; Wroblewski, JT | 1 |
Crepel, F; Gardette, R; Krupa, M | 1 |
Fischbach, GD; Thio, LL; Trussell, LO; Zorumski, CF | 2 |
Dryer, SE | 1 |
Engberg, I; Flatman, JA; Nedergaard, S | 1 |
Sheardown, MJ | 2 |
Carter, CJ; L'Heureux, R; Scatton, B | 1 |
Kaneko, A; Tachibana, M | 1 |
Nishizaki, T; Okada, Y | 1 |
Canonico, PL; Catania, MV; Favit, A; Nicoletti, F | 1 |
Dingledine, R; Verdoorn, TA | 1 |
King, AE; Thompson, SW; Urban, L; Woolf, CJ | 1 |
Astier, H; Tapia-Arancibia, L | 1 |
Shreve, PE; Uretsky, NJ | 1 |
Ben-Ari, Y; Cherubini, E; Gho, M; Neuman, RS | 1 |
Davidoff, RA; Hackman, JC; Wohlberg, CJ | 1 |
Davidson, N; Fong, TM; Lester, HA | 1 |
Lauritzen, M; Nicholson, C; Okada, Y; Rice, ME | 1 |
Massey, SC; Miller, RF | 1 |
Farley, JM; Huang, HM; Jin, C; Rockhold, RW | 1 |
Addae, JI; Stone, TW | 1 |
Anand, H; Badman, G; Collins, JF; Dixon, AJ; Roberts, PJ | 1 |
Blake, J; Church, J; Davies, SN; Jacobson, AE; Lessor, RA; Lodge, D; Rice, KC | 1 |
Nauta, HJ; Pisharodi, M | 1 |
Meldrum, B | 1 |
Herrling, PL; Klockgether, T; Sontag, KH; Turski, L; Watkins, JC | 1 |
Davidoff, RA; Hackman, JC; Holohean, AM; Wohlberg, CJ | 1 |
Evans, RH; Evans, SJ; Pook, PC; Sunter, DC | 1 |
Choi, DW; Goldberg, MP; Kim, JP | 1 |
Card, JP; Siman, R | 1 |
Besharse, JC; Spratt, G | 1 |
Akaike, N; Carpenter, DO; Hori, N | 1 |
McLarnon, JG; Quastel, DM | 1 |
Hamon, B; Heinemann, U | 2 |
Ebina, Y; Shingai, R | 1 |
Bunch, ST; Dunnett, SB; Jones, GH; Whishaw, IQ | 1 |
Carpenter, DO; Galeno, T; Hori, N | 1 |
Ehrlich, D; Sattayasai, J | 1 |
Do, KQ; Herrling, PL; Turski, WA | 1 |
Church, J; Davies, SN; Lodge, D | 1 |
Garthwaite, G; Garthwaite, J; Yamini, B | 1 |
Miller, RJ; Murphy, SN; Thayer, SA | 1 |
Blake, JC; Church, J; Davies, SN; Lodge, D; Martin, D | 1 |
Agrawal, SG; Evans, RH | 1 |
Garthwaite, G; Garthwaite, J; Hajós, F | 1 |
Connick, JH; Heywood, GC; Smith, DA; Stone, TW | 1 |
Heinemann, U; Mody, I | 1 |
Kurcewicz, I; Louvel, J; Pumain, R | 1 |
Heinemann, U | 1 |
De Kloet, ER; Joëls, M; Urban, IJ; Van Veldhuizen, M | 1 |
Kato, S; Negishi, K; Teranishi, T | 1 |
Chapman, AG; Hart, GP; Meldrum, BS; Turski, L; Watkins, JC | 1 |
Biscoe, TJ; Burton, NR; Duchen, MR | 1 |
Dunnett, SB; Hastings, MH; Winn, P | 1 |
Berry, SC; Dawkins, SL; Lodge, D | 1 |
Evans, RH; Watkins, JC | 1 |
Watkins, JC | 1 |
Evans, RH; Smith, DA | 1 |
Collingridge, GL; Kehl, SJ; McLennan, H | 1 |
Crunelli, V; Forda, S; Kelly, JS | 1 |
Donzanti, BA; Uretsky, NJ | 3 |
Kamp, CW; Morgan, WW | 1 |
Collingridge, GL; Kehl, SJ; Loo, R; McLennan, H | 1 |
Joëls, M; Urban, IJ | 2 |
Ariel, M; Dowling, JE; Lasater, EM; Mangel, SC | 1 |
Agnati, LF; Celani, MF; Fuxe, K; Martire, M; Zini, I; Zoli, M | 1 |
McLennan, H | 2 |
Crepel, F; Dupont, JL; Fournier, E; Gardette, R | 1 |
Anis, NA; Berry, SC; Lodge, D | 1 |
Arenson, MS; Berti, C; King, AE; Nistri, A | 1 |
Fagg, GE; Matus, A | 1 |
Perkins, MN; Stone, TW | 4 |
Herrling, PL; Morris, R; Salt, TE | 1 |
Dale, N; Roberts, A | 1 |
Crunelli, V; Mayer, ML | 1 |
Jones, AW; Smith, DA; Watkins, JC | 1 |
Stone, TW | 1 |
Crepel, F; Dhanjal, SS; Sears, TA | 1 |
Davies, J; Evans, RH; Francis, AA; Jones, AW; Watkins, JC | 1 |
Lerma, J; Mellström, B; Naranjo, JR; Paternain, AV | 1 |
Connor, JA; Linden, DJ; Smeyne, M | 1 |
Glowinski, J; Prémont, J; Stella, N; Tencé, M | 1 |
Lees, GJ; Leong, W | 1 |
Klitgaard, H; Laudrup, P | 1 |
Dray, A; Naeem, S; Patel, IA; Urban, L | 1 |
Amico, C; Condorelli, DF; Dell'Albani, P; Giuffrida-Stella, AM; Kaczmarek, L; Lukasiuk, K | 1 |
Dekermendjian, K; Frandsen, A; Nielsen, M; Schousboe, A; Witt, MR | 1 |
Madamba, SG; Nie, Z; Siggins, GR | 1 |
Anderson, DK; Farooqui, AA; Horrocks, LA; Wells, K | 1 |
Hofmann, HD; Huba, R; Yamashita, M | 1 |
Fukui, S; Hasegawa, T; Iyo, M; Maeda, Y; Nabeshima, T; Yamada, K | 1 |
Carvalho, AP; Carvalho, CM; Duarte, CB; Ferreira, IL; Santos, PF | 1 |
Bloms-Funke, P; Madeja, M; Musshoff, U; Speckmann, EJ | 1 |
Lovinger, DM; Peoples, RW; Weight, FF; White, G; Wright, JM | 1 |
Dowling, JE; Grant, GB | 1 |
Acciarri, N; Beani, L; Bianchi, C; Calo, G; Fabrizi, A; Ferraro, L; Morari, M; Piazza, G | 1 |
Park, J; Tasker, RC; Vornov, JJ | 1 |
Bergeron, R; de Montigny, C; Debonnel, G | 2 |
Carpenter, DO; Hori, N; Matthews, MR; Parsons, PJ | 1 |
Finiels, F; Mallet, J; Privat, A; Revah, F; Robert, JJ; Samolyk, ML | 1 |
Cox, AJ; Lee, RK; Nitsch, RM; Wurtman, RJ | 1 |
Herrling, PL; Meier, CL | 1 |
Miura, M; Takayama, K | 1 |
Catania, MV; Hollingsworth, Z; Penney, JB; Young, AB | 1 |
Henry, JL; Radhakrishnan, V | 2 |
Bessho, Y; Nakanishi, S; Nawa, H | 1 |
Ferrer-Montiel, AV; Montal, M; Planells-Cases, R; Sun, W | 1 |
Schultz, K; Weiler, R | 1 |
Dykstra, CL; Gebhart, GF; Meller, ST | 1 |
Lehmann, JC; Procureur, D; Wood, PL | 1 |
Buchwald, NA; Cepeda, C; Levine, MS | 1 |
Boksa, P; Chaudieu, I; Quirion, R; St-Pierre, JA | 1 |
Churn, SB; DeLorenzo, RJ; Limbrick, D; Sombati, S | 1 |
Hounsgaard, J; Skydsgaard, M | 1 |
Danysz, W; Mobley, SL; Wenk, GL | 1 |
Cui, LN; Inenaga, K; Nagatomo, T; Yamashita, H | 1 |
Gonzales, JM; Irvine, S; Loeb, AL; Reichard, PS | 1 |
Daszuta, A; Forni, C; Moukhles, H; Nieoullon, A | 1 |
López-Colomé, AM; Ortega, A; Romo-de-Vivar, M | 1 |
Aronica, E; Balázs, R; Condorelli, DF; Dell'Albani, P; Hack, N; Nicoletti, F | 1 |
Heinemann, U; Igelmund, P; Leschinger, A; Stabel, J | 1 |
Fan, P; Szerb, JC | 1 |
Bonanno, G; Donadini, F; Fedele, E; Fontana, G; Raiteri, M; Vallebuona, F | 1 |
Monard, D; Nitsch, C; Scotti, AL | 1 |
Scholz, WK | 1 |
Budelmann, BU; Tu, Y | 1 |
Janáky, R; Oja, SS; Saransaari, P; Varga, V | 2 |
Gebhart, GF; Kolhekar, R | 1 |
Berrino, L; Filippelli, A; Leyva, J; Maione, S; Pizzirusso, A; Rossi, F; Vitagliano, S | 1 |
Giboney, P; Simmons, DD; Song, C | 1 |
Carpenter, DO; Hori, N | 1 |
Song, XJ; Zhao, ZQ | 2 |
Cline, HT; Constantine-Paton, M; McDonald, JW | 1 |
Bergeron, R; de Montigny, C; Debonnel, G; Gronier, B; Monnet, FP | 1 |
Bockaert, J; Lafon-Cazal, M; Marin, P; Quignard, JF | 1 |
Buchanan, JT; Moore, LE | 1 |
Dai, X; Douglas, JR; Jordan, LM; Noga, BR | 1 |
Duberley, RM; Ham, J; Rickards, CR; Scanlon, MF | 1 |
Ebner, TJ; Elias, SA; Yae, H | 1 |
Chalecka-Franaszek, E; Fortuna, S; Michalek, H; Nalepa, I; Pintor, A; Vetulani, J | 1 |
Aronica, E; Balázs, R; Condorelli, DF; Nicoletti, F | 1 |
Boudouresque, F; Chautard, T; Guillaume, V; Oliver, C | 1 |
Jhamandas, JH; Zidichouski, JA | 1 |
Chuang, DM; Yu, O | 1 |
Tang, CM; Yamada, KA | 1 |
Akoev, GN; Dambinova, SA; Gorodinsky, AI; Ryzhova, IV | 1 |
Murthy, CR; Rao, VL | 1 |
Johnston, MV; McDonald, JW | 1 |
Biella, G; Lacerenza, M; Marchettini, P; Sotgiu, ML | 1 |
Akaoka, H; Brunet, JL; Buda, M; Charléty, PJ; Chergui, K; Chouvet, G; Saunier, CF; Svensson, TH | 1 |
Jarrard, LE; Meldrum, BS | 1 |
Allaoua, H; Alonso, R; Boksa, P; Chaudieu, I; Quirion, R | 1 |
Bürki, C; Ehrenberger, K; Felix, D | 1 |
Marszalec, W; Narahashi, T | 1 |
Heary, RF; Krieger, AJ; Maniker, AH; Sapru, HN | 1 |
Childers, WS; Greenough, WT; Weiler, IJ | 1 |
Bleakman, D; Leander, JD; Lodge, D; Ornstein, PL; Palmer, AJ; Salhoff, CR; Schoepp, DD; Tizzano, JP; Wright, RA | 1 |
Giovannucci, DR; Stuenkel, EL | 1 |
Friedemann, MN; Gerhardt, GA | 1 |
Garcia-Sancho, J; Núñez, L; Villalobos, C | 1 |
Kirischuk, S; Kostyuk, P; Verkhratsky, A; Voitenko, N | 1 |
Bergeron, R; De Montigny, C; Debonnel, G; Monnet, FP | 1 |
Dudel, J; Parnas, H; Parnas, I; Ravin, R | 1 |
Fonteriz, RI; Garcia-Sancho, J; Nuñez, L; Sanchez, A | 1 |
Basinger, SF; Choe, HG; Louie, K | 1 |
Pellicano, MP; Sadile, AG; Sagvolden, T; Sergeant, JA | 1 |
Gruol, DL; Parsons, KL | 1 |
Burke, JP; Hablitz, JJ | 1 |
Fu, WM; Liou, HC; Yang, RS | 1 |
Bonham, AC; Wilson, CG; Zhang, Z | 1 |
Bulloch, AG; Lukowiak, K; Magoski, NS; McKenney, KK; Nesic, OB; Syed, NI | 1 |
Brito, MI; de Barioglio, SR | 1 |
Acuña, C; Cudeiro, J; Martinez-Conde, S; Rivadulla, C; Rodriguez, R | 1 |
Barks, JD; Liu, XH; Silverstein, FS; Sun, R | 1 |
Chai, YS; Jeng, CH; Lee, YR; Lin, JC; Wang, Y | 1 |
Orrego, F; Riquelme, G; Villanueva, S; Wyneken, U | 1 |
Folbergrová, J; Haugvicová, R; Lisý, V; Stastný, F | 1 |
Watanabe, T; Yanai, K; Zhao, XL | 1 |
Gioanni, Y; Glowinski, J; Pirot, S; Thierry, AM | 1 |
Atlante, A; Calissano, P; Ciotti, MT; Gagliardi, S; Marra, E; Minervini, M | 1 |
Fónagy, A; Latzkovits, L; Torday, C | 1 |
Kleinrok, Z; Kocki, T; Saran, T; Turski, WA; Urbanska, EM | 1 |
Fischer, AJ; Poon, J; Seltner, RL; Stell, WK | 1 |
Bianchi, L; Della Corte, L; Giovannini, MG; Pepeu, G; Rakovska, A | 1 |
Cai, Z; Rhodes, PG | 1 |
De Laurentiis, A; del Carmen Díaz, M; Duvilanski, B; Lasaga, M; Pampillo, M; Pisera, D; Seilicovich, A; Theas, S | 1 |
Balázs, R; Facchinetti, F; Hack, NJ | 1 |
Calagui, B; Chan, PH; Chen, SF; Copin, JC; Epstein, CJ; Gobbel, GT; Li, Y; Reola, LF; Sato, S | 1 |
Solomon, IC | 1 |
Linden, R; Martins, RA; Rocha, M | 1 |
Henry, JL; Pitcher, GM | 1 |
Johns, RA; Tichotsky, A; Zuo, Z | 1 |
Cooke, IM; Duan, S | 1 |
Alford, S; Schwartz, NE | 1 |
Amaha, K; Sakai, F | 1 |
Empson, RM; Gee, VJ; Newberry, NR; Sheardown, MJ | 1 |
Battaglia, G; Bruno, V; Ceña, V; Cespédes, VM; Copani, A; Flor, PJ; Galindo, MF; Gasparini, F; Kuhn, R; Nicoletti, F; Sánchez-Prieto, J | 1 |
Fretto, G; Li Volsi, G; Licata, F; Mauro, MD; Santangelo, F | 1 |
Figueroa, L; Jaffe, EH | 1 |
Lisý, V; Stastný, F | 1 |
Qin, YH; Song, LH; Wang, L; Zhang, HS | 1 |
André, N; Gillardin, JM; Heulard, I; Verleye, M | 1 |
Bermack, JE; Debonnel, G | 1 |
Gobbi, G; Janiri, L | 1 |
Jantas, D; Jaworska-Feil, L; Lason, W; Lipkowski, AW | 1 |
Dharkar, P; Han, TH; Lee, CH; Li, Y; Mayer, ML; Serpe, M | 1 |
Hayashi, Y; Takahashi, M; Tanaka, J | 1 |
8 review(s) available for quisqualic acid and n-methylaspartate
Article | Year |
---|---|
Ligands for glutamate receptors: design and therapeutic prospects.
Topics: Animals; Drug Design; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Humans; Ligands; N-Methylaspartate; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, Metabotropic Glutamate; Synapses | 2000 |
Actions of norepinephrine in the rat hippocampus.
Topics: Afferent Pathways; Animals; Drug Synergism; Hippocampus; Locus Coeruleus; N-Methylaspartate; Norepinephrine; Phenylephrine; Quisqualic Acid; Rats; Receptors, Adrenergic, alpha; Receptors, Adrenergic, beta | 1991 |
Alcohol and anesthetic actions on excitatory amino acid-activated ion channels.
Topics: Alcohols; Anesthetics; Animals; Ethanol; Evoked Potentials; Hippocampus; In Vitro Techniques; Ion Channels; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid | 1991 |
Alcohol inhibition of NMDA channel function.
Topics: Alcohols; Animals; Brain; Cell Membrane; Ethanol; Evoked Potentials; Glutamates; Glutamic Acid; Ion Channels; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate | 1991 |
The physiology of excitatory amino acids in the vertebrate central nervous system.
Topics: Amino Acids; Animals; Aspartic Acid; Central Nervous System; Glutamates; Glutamic Acid; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Vertebrates | 1987 |
Pharmacology of excitatory amino acid transmitters.
Topics: Amino Acids; Animals; Aspartic Acid; Glutamates; Kainic Acid; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, Glutamate | 1981 |
Ethanol action on excitatory amino acid activated ion channels.
Topics: Animals; Brain; Cells, Cultured; Ethanol; Excitatory Amino Acids; Ion Channels; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid | 1993 |
Excitatory amino acid neurotoxicity in the developing brain.
Topics: Animals; Brain; Brain Ischemia; Dizocilpine Maleate; Humans; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate | 1993 |
557 other study(ies) available for quisqualic acid and n-methylaspartate
Article | Year |
---|---|
Synthesis, resolution, and absolute configuration of the isomers of the neuronal excitant 1-amino-1,3-cyclopentanedicarboxylic acid.
Topics: Amino Acids; Animals; Circular Dichroism; Crystallization; Cycloleucine; Hippocampus; Isomerism; Neurons | 1988 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Excitatory amino acid receptors and synaptic excitation in the mammalian central nervous system.
Topics: Alanine; Amino Acids; Animals; Aspartic Acid; Glutamates; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Neurotransmitter; Spinal Nerve Roots | 1979 |
Time course of glutamate receptor expression in individual oocytes of Xenopus laevis after injection of rat brain RNA.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cerebral Cortex; Electrophysiology; Ibotenic Acid; Kainic Acid; N-Methylaspartate; Oocytes; Quisqualic Acid; Rats; Receptors, Glutamate; RNA, Messenger; Xenopus laevis | 1992 |
Excitotoxic lesions of rat basal forebrain: differential effects on choline acetyltransferase in the cortex and amygdala.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amygdala; Animals; Basal Ganglia; Cerebral Cortex; Choline O-Acetyltransferase; Ibotenic Acid; Male; N-Methylaspartate; Neurotoxins; Prosencephalon; Quinolinic Acid; Quisqualic Acid; Rats; Rats, Sprague-Dawley | 1992 |
Evidence that [3H]glutamate binding sites are masked by biologically relevant endogenous factor on cell membranes of frog spinal cord.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding Sites; Cell Membrane; Cytosol; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Kinetics; Membrane Potentials; N-Methylaspartate; Piperazines; Quisqualic Acid; Rana catesbeiana; Spinal Cord | 1992 |
Memantine stimulates inositol phosphates production in neurones and nullifies N-methyl-D-aspartate-induced destruction of retinal neurones.
Topics: Animals; Animals, Newborn; Brain; Calcium; Carbachol; Cells, Cultured; Chickens; In Vitro Techniques; Inositol 1,4,5-Trisphosphate; Inositol Phosphates; Kinetics; Memantine; N-Methylaspartate; Neurons; Norepinephrine; Organ Specificity; Quisqualic Acid; Rabbits; Retina; Retinal Ganglion Cells; Serotonin | 1992 |
Ethanol attenuates the response of locus coeruleus neurons to excitatory amino acid agonists in vivo.
Topics: Acetylcholine; Adrenergic Fibers; Amino Acids; Animals; Ethanol; Glutamates; Kainic Acid; Locus Coeruleus; Male; N-Methylaspartate; Norepinephrine; Quisqualic Acid; Rats; Rats, Inbred Strains; Synaptic Transmission | 1992 |
Selective potentiation of N-methyl-D-aspartate-induced current by protein kinase C in Xenopus oocytes injected with rat brain RNA.
Topics: Animals; Brain; Enzyme Activation; Glutamates; Glycine; Male; Membrane Potentials; N-Methylaspartate; Ovum; Protein Kinase C; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; RNA, Messenger; Tetradecanoylphorbol Acetate; Xenopus | 1992 |
Excitatory amino acid signal transduction in the hippocampus: role of noradrenergic afferents and nitric oxide in cGMP increases in vivo.
Topics: Analysis of Variance; Animals; Cyclic GMP; Hippocampus; Kainic Acid; Male; N-Methylaspartate; Nitric Oxide; Norepinephrine; Quisqualic Acid; Rats; Rats, Inbred Strains; Signal Transduction | 1992 |
N-methyl-D-aspartate-mediated injury enhances quisqualic acid-stimulated phosphoinositide turnover in perinatal rats.
Topics: Amino Acids; Animals; Animals, Newborn; Calcium; Carbachol; Dose-Response Relationship, Drug; Drug Synergism; Hydrolysis; Inositol; Microinjections; N-Methylaspartate; Pharmaceutical Vehicles; Phosphatidylinositols; Quisqualic Acid; Rats; Rats, Inbred Strains; Tetrodotoxin | 1992 |
Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump.
Topics: Action Potentials; Animals; Cells, Cultured; Dopamine; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Sodium; Sodium-Potassium-Exchanging ATPase; Synaptic Transmission | 1992 |
Effects of N-methyl-D-aspartate on quisqualate-stimulated phosphoinositide hydrolysis in slices of kitten striate cortex.
Topics: Animals; Cats; Hydrolysis; In Vitro Techniques; N-Methylaspartate; Phosphatidylinositols; Quisqualic Acid; Visual Cortex | 1992 |
The antinociceptive activity of excitatory amino acids in the rat brainstem: an anatomical and pharmacological analysis.
Topics: 2-Amino-5-phosphonovalerate; Animals; Brain Mapping; Brain Stem; Diencephalon; Dizocilpine Maleate; Female; Glutamates; Glutamic Acid; Kainic Acid; Male; Medulla Oblongata; Mesencephalon; Microinjections; N-Methylaspartate; Pain; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Inbred Strains; Reticular Formation; Stereotaxic Techniques | 1992 |
The effects of excitatory amino acids on proenkephalin and prodynorphin mRNA levels in the hippocampal dentate gyrus of the rat; an in situ hybridization study.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Enkephalins; Functional Laterality; Gene Expression; Hippocampus; Kainic Acid; Kinetics; Male; Microinjections; N-Methylaspartate; Nucleic Acid Hybridization; Protein Precursors; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; RNA, Messenger | 1992 |
Kindling-induced long-lasting changes in synaptic transmission in the basolateral amygdala.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Amygdala; Animals; Bicuculline; Electric Stimulation; Kainic Acid; Kindling, Neurologic; Male; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, GABA-A; Synapses; Synaptic Transmission | 1992 |
Evidence that non-NMDA receptors are involved in the excitatory pathway from the pedunculopontine region to nigrostriatal dopaminergic neurons.
Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Corpus Striatum; Dopamine; Electric Stimulation; Evoked Potentials; Glutamine; Iontophoresis; Kainic Acid; Kynurenic Acid; Male; N-Methylaspartate; Neurons; Pons; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Substantia Nigra; Synapses | 1992 |
Serotonin1A facilitation of frog motoneuron responses to afferent stimuli and to N-methyl-D-aspartate.
Topics: 2-Amino-5-phosphonovalerate; 8-Hydroxy-2-(di-n-propylamino)tetralin; Afferent Pathways; Animals; Electric Stimulation; Evoked Potentials; Glycine; In Vitro Techniques; Kainic Acid; Membrane Potentials; Motor Neurons; N-Methylaspartate; Nerve Fibers; Quisqualic Acid; Rana pipiens; Serotonin; Spinal Cord; Spinal Nerve Roots; Tetrahydronaphthalenes; Tetrodotoxin; Tropanes | 1992 |
L-serine-O-phosphate blocks NMDA-evoked responses in the ampullae of Lorenzini of skates.
Topics: Amino Acids; Animals; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neurons, Afferent; Phosphoserine; Quisqualic Acid; Skates, Fish; Synapses; Synaptic Transmission | 1992 |
Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro.
Topics: Animals; Animals, Newborn; Astrocytes; Axons; Calcium; Cells, Cultured; Cytoplasm; Fura-2; gamma-Aminobutyric Acid; Glial Fibrillary Acidic Protein; Glutamates; Glutamic Acid; Immunohistochemistry; Kainic Acid; Kinetics; Microscopy, Electron; Microscopy, Fluorescence; Models, Neurological; N-Methylaspartate; Neuroglia; Neurons; Quisqualic Acid; Rats; Serotonin; Suprachiasmatic Nucleus; Synapses; Time Factors | 1992 |
Selective effects of cyanide (100 microM) on the excitatory amino acid-induced elevation of intracellular calcium levels in neuronal culture.
Topics: Amino Acids; Animals; Calcium; Cells, Cultured; Cerebellum; Diltiazem; Glutamates; Glutamic Acid; Kainic Acid; Lanthanum; Membrane Potentials; N-Methylaspartate; Neurons; Potassium Chloride; Quisqualic Acid; Rats; Rats, Inbred Strains; Sodium Cyanide | 1992 |
Regulation of nerve growth factor and nerve growth factor receptor production by NMDA in C6 glioma cells.
Topics: 2-Amino-5-phosphonovalerate; Animals; Base Sequence; Blotting, Northern; Bucladesine; Cyclic AMP; Glioma; Kainic Acid; Molecular Sequence Data; N-Methylaspartate; Neoplasm Proteins; Nerve Growth Factors; Quisqualic Acid; Rats; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate; Receptors, Nerve Growth Factor; RNA, Messenger; RNA, Neoplasm; Tumor Cells, Cultured | 1992 |
Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex.
Topics: Adolescent; Amino Acids; Cerebral Cortex; Child; Child, Preschool; Dopamine; Drug Interactions; Electrophysiology; Glutamates; Glutamic Acid; Humans; N-Methylaspartate; Quisqualic Acid | 1992 |
Insulin-specific sensitization of cultured cerebrocortical neurons to glutamate excitotoxicity.
Topics: Animals; Cell Death; Cells, Cultured; Cerebral Cortex; Fibroblast Growth Factor 2; Glutamates; Glutamic Acid; Insulin; Insulin-Like Growth Factor I; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid; Rats | 1992 |
Interaction between thyrotropin-releasing hormone (TRH) and NMDA-receptor-mediated responses in hypoglossal motoneurones.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Aspartic Acid; Brain Stem; Evoked Potentials; Glutamates; Glutamic Acid; Guinea Pigs; Hypoglossal Nerve; In Vitro Techniques; Membrane Potentials; Motor Neurons; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Receptors, Thyrotropin-Releasing Hormone; Synapses; Tetrodotoxin; Thyrotropin-Releasing Hormone | 1992 |
N-methyl-D-aspartate exposure blocks glutamate toxicity in cultured cerebellar granule cells.
Topics: Animals; Aspartic Acid; Cells, Cultured; Cerebellum; Culture Media; Cytoplasmic Granules; Excitatory Amino Acid Antagonists; Glucose; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Magnesium; N-Methylaspartate; Neurons; Ouabain; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Sensitivity and Specificity; Tritium | 1992 |
Epidermal growth factor selectively enhances NMDA receptor-mediated increase of intracellular Ca2+ concentration in rat hippocampal neurons.
Topics: Animals; Calcium; Epidermal Growth Factor; Fura-2; Glutamates; Glutamic Acid; Hippocampus; N-Methylaspartate; Neuronal Plasticity; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Recombinant Proteins | 1992 |
Cortical AMPA receptors: age-dependent regulation by cellular depolarization and agonist stimulation.
Topics: Aging; Animals; Cerebral Cortex; Glutamates; Glutamic Acid; Kainic Acid; Male; Membrane Potentials; Muscimol; N-Methylaspartate; Neuronal Plasticity; Quisqualic Acid; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Receptors, AMPA; Receptors, Neurotransmitter; Veratridine | 1992 |
The neuroprotective properties of ifenprodil, a novel NMDA receptor antagonist, in neuronal cell culture toxicity studies.
Topics: Animals; Cell Death; Cells, Cultured; Cerebral Cortex; Cyanates; Dizocilpine Maleate; Glutamates; Glutamic Acid; Kainic Acid; Mice; N-Methylaspartate; Neurons; Piperidines; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate | 1992 |
Cyanide selectively augments kainate- but not NMDA-induced release of glutamate and taurine.
Topics: Animals; Cells, Cultured; Cerebellum; Cyanides; Glutamates; Glutamic Acid; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Taurine | 1992 |
Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area.
Topics: Animals; Brain; Dopamine; Electrophysiology; Evoked Potentials; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Male; N-Methylaspartate; Neurons; Nucleus Accumbens; Pargyline; Quisqualic Acid; Rats; Rats, Wistar; Stereotaxic Techniques | 1992 |
Excitatory effect of N-methyl-D-aspartate and kainate receptor on the 2-deoxyglucose uptake in the rat suprachiasmatic nucleus in vitro.
Topics: Animals; Deoxyglucose; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; Motor Activity; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Suprachiasmatic Nucleus | 1992 |
Antagonism of synaptic potentials in ventral horn neurones by 6-cyano-7-nitroquinoxaline-2,3-dione: a study in the rat spinal cord in vitro.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Electric Stimulation; Female; Half-Life; In Vitro Techniques; Male; Motor Neurons; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Spinal Nerve Roots; Synapses | 1992 |
Characterization and regulation of a high affinity [3H]CNQX labelled AMPA receptor in rat neocortex.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cerebral Cortex; In Vitro Techniques; Kainic Acid; Male; Muscimol; N-Methylaspartate; Oxadiazoles; Quinoxalines; Quisqualic Acid; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Neurotransmitter; Tritium | 1992 |
Intrathecal administration of non-NMDA receptor agonists increases arterial pressure and heart rate in the rat.
Topics: Animals; Blood Pressure; Carbachol; Ganglia, Autonomic; Ganglionic Blockers; Glutamates; Glutamic Acid; Heart Rate; Hexamethonium; Hexamethonium Compounds; Injections, Spinal; Kainic Acid; Kynurenic Acid; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic; Synaptic Transmission | 1992 |
Differential effects of neuroexcitatory amino acids on corticotropin-releasing hormone-41 and vasopressin release from rat hypothalamic explants.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Arginine Vasopressin; Corticotropin-Releasing Hormone; Glycine; Hypothalamus; Kainic Acid; Magnesium; Male; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Rats, Wistar | 1992 |
Effect of magnesium on calcium influx activated by glutamate and its agonists in cultured cerebellar granule cells.
Topics: 2-Amino-5-phosphonovalerate; Animals; Calcium; Calcium Radioisotopes; Cells, Cultured; Cerebellum; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Kainic Acid; Magnesium; N-Methylaspartate; Nifedipine; Phencyclidine; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Glutamate; Verapamil | 1992 |
NMDA-, but not kainate- or quisqualate-dependent increases in cerebellar cGMP are dependent upon monoaminergic innervation.
Topics: Animals; Cerebellum; Cyclic GMP; Kainic Acid; Male; Mice; N-Methylaspartate; Neurotransmitter Agents; Norepinephrine; Quisqualic Acid; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Serine | 1992 |
Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat.
Topics: Action Potentials; Animals; Animals, Newborn; Aspartic Acid; Brain Stem; Dose-Response Relationship, Drug; Glutamates; Glutamic Acid; Kainic Acid; Locomotion; N-Methylaspartate; Nerve Net; Quisqualic Acid; Rats; Rats, Wistar; Serotonin; Spinal Cord | 1992 |
Glutamate receptor agonists stimulate nitric oxide synthase in primary cultures of cerebellar granule cells.
Topics: Amino Acid Oxidoreductases; Animals; Arginine; Calcium; Cells, Cultured; Cerebellum; Citrulline; Cyclic GMP; Glutamates; Glutamic Acid; Granulocytes; Kainic Acid; N-Methylaspartate; Nitric Oxide Synthase; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter | 1992 |
N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Axons; Glutamates; Glutamic Acid; Hippocampus; Ibotenic Acid; Kainic Acid; Magnesium; Male; N-Methylaspartate; Norepinephrine; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Synaptosomes | 1992 |
N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. II. Evidence for functional cooperation and for coexistence on the same axon terminal.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Axons; Dizocilpine Maleate; Drug Interactions; Hippocampus; Ibotenic Acid; Magnesium; Male; N-Methylaspartate; Norepinephrine; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, AMPA; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1992 |
Possible role of cGMP in excitatory amino acid induced cytotoxicity in cultured cerebral cortical neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Cell Death; Cells, Cultured; Cerebral Cortex; Cholera Toxin; Cyclic GMP; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Mice; N-Methylaspartate; Neurons; Pertussis Toxin; Quisqualic Acid; Time Factors; Virulence Factors, Bordetella | 1992 |
Excitatory amino acid receptors on isolated retinal ganglion cells from the goldfish.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Cells, Cultured; Chlorides; Electrophysiology; Glutamates; Glutamic Acid; Goldfish; Ibotenic Acid; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Retinal Ganglion Cells; Sodium | 1992 |
Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate and kainate in cultured cerebral cortical neu
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cell Survival; Cells, Cultured; Cerebral Cortex; Dantrolene; Glutamates; Glutamic Acid; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Mice; N-Methylaspartate; Neurotoxins; Quisqualic Acid; Verapamil | 1992 |
Purification of AMPA type glutamate receptor by a spider toxin.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cattle; Cerebellum; Chloride Channels; Chromatography, Affinity; Chromatography, Ion Exchange; Electrophoresis, Polyacrylamide Gel; Glutamates; Glutamic Acid; Ibotenic Acid; Ion Channel Gating; Kainic Acid; Kinetics; Liposomes; Membrane Proteins; N-Methylaspartate; Nerve Tissue Proteins; Quisqualic Acid; Receptors, AMPA; Receptors, Neurotransmitter; Spider Venoms | 1992 |
NMDA treatment and K(+)-induced depolarization selectively promote the expression of an NMDA-preferring class of the ionotropic glutamate receptors in cerebellar granule neurones.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Calcium Channels; Cell Survival; Cells, Cultured; Cerebellar Cortex; Glutamates; Glutamic Acid; Glycine; Ibotenic Acid; Ion Channel Gating; Kainic Acid; Magnesium; N-Methylaspartate; Neurons; Potassium; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Up-Regulation | 1992 |
Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aging; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Analysis of Variance; Animals; Brain; Brain Injuries; Diazepam; Dizocilpine Maleate; Female; Ibotenic Acid; Male; N-Methylaspartate; Neurotoxins; Organ Specificity; Phenytoin; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Seizures | 1992 |
Evoked endogenous taurine release from cultured cerebellar neurons.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cells, Cultured; Cerebellum; Dizocilpine Maleate; Ibotenic Acid; Kainic Acid; N-Methylaspartate; Neurons; Piperazines; Quinoxalines; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Taurine | 1992 |
Modulation of excitatory amino acid responses in rat dorsal horn neurons by tachykinins.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Calcium; Cesium; Colforsin; Glycine; Ibotenic Acid; In Vitro Techniques; N-Methylaspartate; Neurokinin A; Neurons; Peptides; Phorbol Esters; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Substance P; Tachykinins | 1992 |
NMDA-induced release of nitric oxide potentiates aspartate overflow from cerebellar slices.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Arginine; Aspartic Acid; Cerebellum; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Magnesium; N-Methylaspartate; Nitric Oxide; omega-N-Methylarginine; Quisqualic Acid; Rats; Rats, Wistar | 1992 |
Effects of L- and N-type Ca2+ channel antagonists on excitatory amino acid-evoked dopamine release.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Calcium Channel Blockers; Cells, Cultured; Dopamine; Kainic Acid; Mesencephalon; N-Methylaspartate; Nitrendipine; omega-Conotoxin GVIA; Peptides, Cyclic; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Veratridine | 1992 |
Alcohol withdrawal reaction as a result of adaptive changes of excitatory amino acid receptors.
Topics: Animals; Brain; Dizocilpine Maleate; Electrophysiology; Ethanol; Injections, Intraperitoneal; Kainic Acid; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Substance Withdrawal Syndrome | 1992 |
[Study of the role of different types of glutamate receptors in spatial memory in rats].
Topics: Animals; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamates; Male; Memory; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, Glutamate; Spatial Behavior | 1992 |
Neuropeptide Y potentiates selectively the N-methyl-D-aspartate response in the rat CA3 dorsal hippocampus. I. Involvement of an atypical neuropeptide Y receptor.
Topics: Animals; Drug Synergism; Hippocampus; Male; N-Methylaspartate; Neuropeptide Y; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Structure-Activity Relationship | 1992 |
EEG-dependent modulation of response dynamics of cat dLGN relay cells and the contribution of corticogeniculate feedback.
Topics: Animals; Cats; Electroencephalography; Feedback; Functional Laterality; Geniculate Bodies; N-Methylaspartate; Photic Stimulation; Quisqualic Acid; Temperature; Visual Cortex | 1992 |
In vivo electrophysiological evidence for a selective modulation of N-methyl-D-aspartate-induced neuronal activation in rat CA3 dorsal hippocampus by sigma ligands.
Topics: Action Potentials; Animals; Dose-Response Relationship, Drug; Electrophysiology; Hippocampus; Kainic Acid; Ligands; Male; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate | 1992 |
Quisqualate neurotoxicity in rat cortical cultures: pharmacology and mechanisms.
Topics: Animals; Cells, Cultured; Cerebral Cortex; Dizocilpine Maleate; Kynurenic Acid; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate | 1992 |
Comparative analysis of seizures induced by intracerebroventricular administration of NMDA, kainate and quisqualate in mice.
Topics: Animals; Dose-Response Relationship, Drug; Epilepsy, Tonic-Clonic; Injections, Intraventricular; Kainic Acid; Male; Mice; Myoclonus; N-Methylaspartate; Quisqualic Acid; Seizures; Status Epilepticus | 1992 |
Amitriptyline prevents N-methyl-D-aspartate (NMDA)-induced toxicity, does not prevent NMDA-induced elevations of extracellular glutamate, but augments kainate-induced elevations of glutamate.
Topics: Amitriptyline; Animals; Cell Death; Cells, Cultured; Extracellular Matrix; Glutamates; Imipramine; Kainic Acid; Lethal Dose 50; N-Methylaspartate; Neurons; Nortriptyline; Quisqualic Acid; Rats; Rats, Inbred Strains; Taurine | 1992 |
Calcium modulation of the N-methyl-D-aspartate (NMDA) response and electrographic seizures in immature hippocampus.
Topics: Age Factors; Animals; Calcium; Calcium Channels; Drug Interactions; Epilepsy; GABA Antagonists; Hippocampus; Ion Channel Gating; N-Methylaspartate; Penicillins; Picrotoxin; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Tetrodotoxin | 1991 |
Endogenous activation of NMDA and non-NMDA glutamate receptors on respiratory neurones in cat medulla.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Cats; Decerebrate State; Iontophoresis; Medulla Oblongata; Membrane Potentials; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Respiratory Center | 1991 |
Metabotropic receptor-mediated regulation of cytoplasmic free calcium in cultured cerebellar granule cells.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Carbachol; Cells, Cultured; Cerebellum; Cycloleucine; Cytoplasm; Ibotenic Acid; Kinetics; N-Methylaspartate; Neurotoxins; Piperidines; Quisqualic Acid; Receptors, Neurotransmitter | 1991 |
Progesterone administration attenuates excitatory amino acid responses of cerebellar Purkinje cells.
Topics: Amino Acids; Animals; Bicuculline; Cerebellum; Drug Synergism; Electrophysiology; Female; Kainic Acid; N-Methylaspartate; Progesterone; Purkinje Cells; Quisqualic Acid; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate | 1991 |
Excitatory amino acids: new tools for old stories or pharmacological subtypes of glutamate receptors: electrophysiological studies.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Brain Stem; Cerebral Cortex; Electrophysiology; Ibotenic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neurons; Polyamines; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord; Wasp Venoms | 1991 |
Developmental assembly of calcium-mobilizing systems for excitatory amino acids in rat cerebellum.
Topics: Amino Acids; Animals; Antibodies, Monoclonal; Calcium; Calcium Channels; Cerebellar Cortex; Cerebellum; Immunohistochemistry; In Vitro Techniques; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; N-Methylaspartate; Phosphotransferases; Phosphotransferases (Alcohol Group Acceptor); Protein Binding; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Cell Surface; Receptors, Cytoplasmic and Nuclear; Receptors, Glutamate; Receptors, Neurotransmitter | 1991 |
A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.
Topics: Animals; Calcium Channels; Dendrites; Electric Conductivity; Guinea Pigs; Hippocampus; Kinetics; Mathematics; Models, Neurological; N-Methylaspartate; Neurons; Pyramidal Tracts; Quisqualic Acid; Rana catesbeiana | 1991 |
Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat.
Topics: Amino Acids; Animals; Brain Stem; Dose-Response Relationship, Drug; Electrophysiology; Enflurane; Flurothyl; gamma-Aminobutyric Acid; Glutamates; Glycine; Halothane; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, GABA-A; Receptors, Neurotransmitter | 1991 |
Lanthanum actions on excitatory amino acid-gated currents and voltage-gated calcium currents in rat dorsal horn neurons.
Topics: Animals; Calcium Channels; Cells, Cultured; Dose-Response Relationship, Drug; gamma-Aminobutyric Acid; Ion Channel Gating; Kainic Acid; Lanthanum; Membrane Potentials; N-Methylaspartate; Quisqualic Acid; Rats; Spinal Cord; Zinc | 1991 |
Acetylcholine release from the rabbit retina mediated by kainate receptors.
Topics: Acetylcholine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Choline; Glutamates; Glutamic Acid; Ibotenic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Rabbits; Receptors, Kainic Acid; Receptors, Neurotransmitter; Retina | 1991 |
Dual effect of glycine on isolated rat suprachiasmatic neurons.
Topics: Animals; Electrophysiology; Glutamates; Glutamic Acid; Glycine; In Vitro Techniques; Membrane Potentials; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Strychnine; Suprachiasmatic Nucleus | 1991 |
Effects of glutamate, quisqualate, and N-methyl-D-aspartate in neonatal brain.
Topics: Amino Acids; Animals; Animals, Newborn; Brain; Brain Ischemia; Female; Glucose; Glutamates; Glutamic Acid; Male; N-Methylaspartate; Organ Specificity; Phosphocreatine; Quisqualic Acid; Rats; Rats, Inbred Strains | 1991 |
Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters.
Topics: Acetylcholine; Animals; Biological Transport, Active; Calcium; Calcium Channels; Carbachol; Cats; Cerebral Cortex; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; N-Methylaspartate; Neurons; Neurotransmitter Agents; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate | 1991 |
Electrogenic uptake contributes a major component of the depolarizing action of L-glutamate in rat hippocampal slices.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Biological Transport, Active; Electrophysiology; Glutamates; Glutamic Acid; Hippocampus; Homocysteine; In Vitro Techniques; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Synaptic Transmission | 1991 |
Met-enkephalin release from slices of the rat striatum and globus pallidus: stimulation by excitatory amino acids.
Topics: Amino Acids; Animals; Corpus Striatum; Enkephalin, Methionine; Globus Pallidus; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Potassium; Quisqualic Acid; Radioimmunoassay; Rats; Rats, Inbred Strains; Stimulation, Chemical | 1991 |
Role of excitatory amino acids in mediating burst discharge of red nucleus neurons in the in vitro turtle brain stem-cerebellum.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Brain Stem; Calcium; Cerebellum; Electric Stimulation; In Vitro Techniques; Iontophoresis; Magnesium; Microelectrodes; N-Methylaspartate; Neurons; Purkinje Cells; Quinoxalines; Quisqualic Acid; Red Nucleus; Spinal Cord; Turtles | 1991 |
Excitatory amino acid response in isolated spiral ganglion cells of guinea pig cochlea.
Topics: Amino Acids; Animals; Chickens; Cochlea; Electrophysiology; Excitatory Amino Acid Antagonists; Female; Ganglia; Glutamates; Guinea Pigs; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neurons, Afferent; Neurotransmitter Agents; Quisqualic Acid; Species Specificity | 1991 |
Differential distribution of excitatory amino acid receptors on embryonic rat spinal cord neurons in culture.
Topics: Animals; Axons; Calcium Channels; Cells, Cultured; Electrophysiology; Embryo, Mammalian; Ion Channel Gating; Kainic Acid; N-Methylaspartate; Neurons; Neurotransmitter Agents; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord; Tissue Distribution | 1991 |
L-argininosuccinate modulates L-glutamate response in acutely isolated cerebellar neurons of immature rat.
Topics: Animals; Argininosuccinic Acid; Calcium; Cells, Cultured; Cerebellum; Fura-2; Glutamates; Glutamic Acid; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Spectrometry, Fluorescence | 1991 |
Modification of the responses of primate spinothalamic neurons to mechanical stimulation by excitatory amino acids and an N-methyl-D-aspartate antagonist.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Glutamates; Glutamic Acid; Macaca fascicularis; N-Methylaspartate; Neurons; Quisqualic Acid; Spinothalamic Tracts | 1991 |
Autoradiographic characterization of [3H]L-glutamate binding sites in developing mouse cerebellar cortex.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Binding, Competitive; Calcium; Cerebellar Cortex; Chlorides; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Mice; N-Methylaspartate; Protein Binding; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Synapses | 1991 |
Regulation of CCK release in cerebral cortex by N-methyl-D-aspartate receptors: sensitivity to APV, MK-801, kynurenate, magnesium and zinc ions.
Topics: 2-Amino-5-phosphonovalerate; Animals; Cerebral Cortex; Dizocilpine Maleate; Kainic Acid; Kynurenic Acid; Magnesium; Male; N-Methylaspartate; Potassium; Quisqualic Acid; Radioimmunoassay; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Sincalide; Zinc | 1991 |
A comparison of excitotoxic lesions of the basal forebrain by kainate, quinolinate, ibotenate, N-methyl-D-aspartate or quisqualate, and the effects on toxicity of 2-amino-5-phosphonovaleric acid and kynurenic acid in the rat.
Topics: 2-Amino-5-phosphonovalerate; Animals; Brain; Brain Diseases; Ibotenic Acid; Kainic Acid; Kynurenic Acid; Male; N-Methylaspartate; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats | 1991 |
NMDA receptors in the intermediolateral column of the spinal cord mediate sympathoexcitatory cardiac responses elicited from the ventrolateral medullary pressor area.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Convulsants; Glutamates; Glutamic Acid; Heart Rate; Ibotenic Acid; Kainic Acid; Male; Medulla Oblongata; Microinjections; Myocardial Contraction; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Spinal Cord | 1991 |
Quantitative autoradiographic study of L-glutamate binding sites in normal and atrophic human cerebellum.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Adolescent; Adult; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Cerebellum; Female; Glutamates; Glutamic Acid; Humans; Ibotenic Acid; Male; N-Methylaspartate; Olivopontocerebellar Atrophies; Piperazines; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1991 |
Activation of excitatory amino acid receptors cannot alone account for anoxia-induced impairment of protein synthesis in rat hippocampal slices.
Topics: Animals; Aspartic Acid; Carbon Radioisotopes; Dizocilpine Maleate; Glutamates; Glutamic Acid; Hippocampus; Hypoxia; Kainic Acid; Lysine; Male; N-Methylaspartate; Nerve Tissue Proteins; Phenazocine; Phencyclidine; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate | 1991 |
Presynaptic modulation of glutamate and dynorphin release by excitatory amino acids in the guinea-pig hippocampus.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Dynorphins; Glutamates; Guinea Pigs; Hippocampus; Ibotenic Acid; Kainic Acid; Kinetics; Male; N-Methylaspartate; Potassium; Quinoxalines; Quisqualic Acid; Synapses; Synaptosomes | 1991 |
Pontomedullary glutamate receptors mediating locomotion and muscle tone suppression.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cats; Electric Stimulation; Female; Kainic Acid; Kinetics; Locus Coeruleus; Male; Medulla Oblongata; Motor Activity; Muscles; N-Methylaspartate; Pons; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter | 1991 |
Chronic application of NMDA decreases the NMDA sensitivity of the evoked tectal potential in the frog.
Topics: 2-Amino-5-phosphonovalerate; Animals; Electric Stimulation; Evoked Potentials; Glutamates; Glutamic Acid; N-Methylaspartate; Optic Nerve; Quisqualic Acid; Rana pipiens; Receptors, N-Methyl-D-Aspartate; Superior Colliculi; Synapses | 1991 |
Retinogeniculate transmission by NMDA and non-NMDA receptors in the cat.
Topics: 2-Amino-5-phosphonovalerate; Animals; Cats; Geniculate Bodies; Glutamates; Glutamic Acid; Iontophoresis; Kynurenic Acid; N-Methylaspartate; Photic Stimulation; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Retina; Synaptic Transmission | 1991 |
Characterization of L-[3H]glutamate binding sites in bovine brain coated vesicles.
Topics: Animals; Binding Sites; Brain; Cattle; Cell Membrane; Chromatography, Gel; Clathrin; Endosomes; Glutamates; GTP-Binding Proteins; Guanosine Triphosphate; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Radioimmunoassay; Receptors, Glutamate; Receptors, Neurotransmitter | 1991 |
Uneven distribution of excitatory amino acid receptors on ventral horn neurones of newborn rat spinal cord.
Topics: 2-Amino-5-phosphonovalerate; Animals; Animals, Newborn; Aspartic Acid; Dendrites; Dose-Response Relationship, Drug; Glutamates; Kainic Acid; Membrane Potentials; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord | 1991 |
Interactions of glutamate receptor agonists coupled to changes in intracellular Ca2+ in rat cerebellar granule cells in primary culture.
Topics: 2-Amino-5-phosphonovalerate; Animals; Calcium; Cells, Cultured; Cerebellum; Dose-Response Relationship, Drug; Fura-2; Glutamates; Kainic Acid; Kinetics; Magnesium; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Sodium; Spectrometry, Fluorescence | 1991 |
Kainate and NMDA toxicity for cultured developing and adult rat spiral ganglion neurons: further evidence for a glutamatergic excitatory neurotransmission at the inner hair cell synapse.
Topics: 2-Amino-5-phosphonovalerate; Animals; Astrocytes; Cell Survival; Cells, Cultured; Cochlea; Ganglia; Glutamates; Glutamic Acid; Hair Cells, Auditory, Inner; Immunohistochemistry; In Vitro Techniques; Indicators and Reagents; Kainic Acid; Kynurenic Acid; N-Methylaspartate; Neurons, Afferent; Organ of Corti; Quisqualic Acid; Rats; Rats, Inbred Strains; Synaptic Transmission | 1991 |
Prolonged exposure to N-methyl-D-aspartate increases intracellular and secreted somatostatin in rat cortical cells.
Topics: Animals; Cerebral Cortex; Female; Kainic Acid; N-Methylaspartate; Pregnancy; Quisqualic Acid; Rats; Somatostatin | 1991 |
Mediation of visual responses in the nucleus of the optic tract in cats and rats by excitatory amino acid receptors.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cats; Evoked Potentials; Evoked Potentials, Visual; Female; Glutamates; Glutamic Acid; Male; N-Methylaspartate; Neurons; Optic Chiasm; Photic Stimulation; Quinoxalines; Quisqualic Acid; Rats; Receptors, Neurotransmitter | 1991 |
Excitatory synapse in the rat hippocampus in tissue culture and effects of aniracetam.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cells, Cultured; Embryo, Mammalian; Evoked Potentials; Hippocampus; Ibotenic Acid; Kainic Acid; N-Methylaspartate; Neurons; Pyramidal Tracts; Pyrrolidinones; Quinoxalines; Quisqualic Acid; Rats; Synapses | 1991 |
Tonically rhythmic neurons within a cardiorespiratory region of the nucleus tractus solitarii of the rat.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Cardiovascular System; Cobalt; Dizocilpine Maleate; gamma-Aminobutyric Acid; Kynurenine; Male; Medulla Oblongata; Membrane Potentials; N-Methylaspartate; Neurons; Neurons, Afferent; Pressoreceptors; Quisqualic Acid; Rats; Rats, Inbred Strains; Respiratory System; Synapses | 1991 |
Receptor sub-types involved in responses of Purkinje cell to exogenous excitatory amino acids and local electrical stimulation in cerebellar slices in the rat.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Amino Acids; Animals; Aspartic Acid; Bicuculline; Cerebellum; Electric Stimulation; Female; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Purkinje Cells; Quinoxalines; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission | 1991 |
Excitatory amino acids evoke taurine release from cerebral cortex slices from adult and developing mice.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cerebral Cortex; Dipeptides; Female; Glutamates; Glutamic Acid; Kainic Acid; Male; Mice; N-Methylaspartate; Neurotoxins; Potassium; Quisqualic Acid; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Secretory Rate; Stimulation, Chemical; Taurine | 1991 |
GABAB receptor stimulation by baclofen and taurine enhances excitatory amino acid induced phosphatidylinositol turnover in neonatal rat cerebellum.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Baclofen; Calcium; Cerebellum; gamma-Aminobutyric Acid; N-Methylaspartate; Phosphatidylinositols; Quinoxalines; Quisqualic Acid; Rats; Receptors, GABA-A; Taurine | 1991 |
Excitotoxicity in the embryonic chick spinal cord.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids, Diamino; Animals; beta-Alanine; Chick Embryo; Cyanobacteria Toxins; Dizocilpine Maleate; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Motor Neurons; N-Methylaspartate; Nerve Degeneration; Neurotoxins; Quinoxalines; Quisqualic Acid; Spinal Cord | 1991 |
Evidence that activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors within the nucleus tractus solitarii triggers swallowing.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Decerebrate State; Deglutition; Facial Nerve; Glutamates; Glutamic Acid; Medulla Oblongata; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1991 |
Ammonia-induced alterations in glutamate and muscimol binding to cerebellar synaptic membranes.
Topics: Ammonia; Animals; Cerebellum; Glutamates; Glutamic Acid; Kainic Acid; Kinetics; Muscimol; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, GABA-A; Receptors, Glutamate; Receptors, Neurotransmitter; Synaptic Membranes | 1991 |
Vinpocetine preferentially antagonizes quisqualate/AMPA receptor responses: evidence from release and ligand binding studies.
Topics: Acetylcholine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding, Competitive; Cerebral Cortex; Corpus Striatum; Dopamine; Glutamates; Glutamic Acid; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Male; Membranes; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, AMPA; Receptors, Cell Surface; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Tritium; Vinca Alkaloids | 1991 |
Sensitivity of rubrospinal neurons to excitatory amino acids in the rat red nucleus in vivo.
Topics: 2-Amino-5-phosphonovalerate; Afferent Pathways; Animals; Aspartic Acid; Cats; Cerebellum; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Iontophoresis; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Red Nucleus; Species Specificity | 1991 |
Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead.
Topics: Animals; Aspartic Acid; Calcium; Dibenzocycloheptenes; Dizocilpine Maleate; Electric Conductivity; Glycine; Hippocampus; Ion Channels; Kainic Acid; Lead; Learning Disabilities; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1990 |
Selective activation of oscillatory currents by trans-ACPD in rat brain mRNA-injected Xenopus oocytes and their blockade by NMDA.
Topics: Amino Acids; Animals; Aspartic Acid; Brain Chemistry; Cycloleucine; Ion Channels; N-Methylaspartate; Oocytes; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface; RNA, Messenger; Xenopus | 1990 |
Spermine and philanthotoxin potentiate excitatory amino acid responses of Xenopus oocytes injected with rat and chick brain RNA.
Topics: Amino Acids; Animals; Aspartic Acid; Bee Venoms; Brain; Chickens; Kainic Acid; Male; Membrane Potentials; Microinjections; N-Methylaspartate; Neurotoxins; Oocytes; Oxadiazoles; Poly A; Polyamines; Quisqualic Acid; Rats; Rats, Inbred Strains; RNA; RNA, Messenger; Spermine; Wasp Venoms; Xenopus | 1990 |
Modulation of the N-methyl-D-aspartate channel by extracellular H+.
Topics: Animals; Aspartic Acid; Cells, Cultured; Embryo, Mammalian; gamma-Aminobutyric Acid; Glycine; Hippocampus; Hydrogen-Ion Concentration; Ion Channels; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Neurotoxins; Oxadiazoles; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1990 |
Miniature excitatory synaptic currents in cultured hippocampal neurons.
Topics: 2-Amino-5-phosphonovalerate; 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Action Potentials; Animals; Aspartic Acid; Calcium Channel Blockers; Cells, Cultured; Dipeptides; Electrophysiology; Fetus; Hippocampus; Kinetics; Membrane Potentials; Mice; N-Methylaspartate; Neurons; Oxadiazoles; Potassium; Quisqualic Acid; Synapses; Tetrodotoxin | 1990 |
Effects of urethane and ketamine on substance P- and excitatory amino acid-induced behavior in mice.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Behavior, Animal; Injections, Spinal; Isomerism; Kainic Acid; Ketamine; Male; Mice; N-Methylaspartate; Quisqualic Acid; Substance P; Urethane | 1990 |
Glutamate, kainate and quisqualate enhance GABA-dependent chloride uptake in cortex.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Biological Transport; Cerebral Cortex; Chloride Channels; Chlorides; Dizocilpine Maleate; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Ion Channels; Kainic Acid; Male; Membrane Proteins; Mice; Mice, Inbred Strains; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Receptors, GABA-A | 1990 |
Glutamate-induced inward current in a clonal neuroblastoma cell line.
Topics: Animals; Electrophysiology; Glutamates; Humans; Ion Channels; Kainic Acid; Mice; N-Methylaspartate; Neuroblastoma; Quisqualic Acid; Rats; Tumor Cells, Cultured | 1990 |
Interactions between substance P, calcitonin gene-related peptide, taurine and excitatory amino acids in the spinal cord.
Topics: Animals; Aspartic Acid; Calcitonin Gene-Related Peptide; Drug Interactions; Glutamates; Glutamic Acid; Kainic Acid; Male; Mice; N-Methylaspartate; Pain; Pain Measurement; Quisqualic Acid; Rats; Rats, Inbred Strains; Reaction Time; Self Mutilation; Spinal Cord; Substance P; Taurine | 1990 |
Glutamate-induced increases in intracellular Ca2+ in cultured frog tectal cells mediated by direct activation of NMDA receptor channels.
Topics: 2-Amino-5-phosphonovalerate; Animals; Calcium; Cells, Cultured; Dizocilpine Maleate; Electrophysiology; Glutamates; Glutamic Acid; Intracellular Membranes; Ion Channels; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Rana pipiens; Receptors, N-Methyl-D-Aspartate; Superior Colliculi | 1991 |
Substance P modulates glutamate-induced currents in acutely isolated rat spinal dorsal horn neurones.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Evoked Potentials; Glutamates; Glutamic Acid; Ibotenic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Substance P | 1990 |
Modulation of carbachol-stimulated inositol phospholipid breakdown in rat cerebral cortical miniprisms by excitatory amino acids and by BAY K-8644 is dependent upon the assay calcium and potassium concentrations used.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Amino Acids; Animals; Calcium; Carbachol; Cerebral Cortex; Inositol Phosphates; Kinetics; N-Methylaspartate; Osmolar Concentration; Phospholipids; Potassium; Quisqualic Acid; Rats | 1991 |
Glutamate: three meetings but how many receptors? Excitatory Amino Acids 1990: a Fidia Research Foundation Symposium, Padua, Italy, May 21-26, 1990. Excitatory Amino Acid Receptors in the Brain: Functions and Disorders, Montreal, Canada, June 23-24, 1990.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Glutamates; Glutamic Acid; GTP-Binding Proteins; Ibotenic Acid; Ion Channel Gating; Ion Channels; Kainic Acid; N-Methylaspartate; Neurotransmitter Agents; Quisqualic Acid; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Signal Transduction | 1990 |
The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones.
Topics: Action Potentials; Amino Acids; Animals; Cells, Cultured; Glutamates; Hippocampus; Hydrogen-Ion Concentration; Ion Channels; Kainic Acid; Magnesium; Mice; Mice, Inbred BALB C; N-Methylaspartate; Neurons; Quisqualic Acid; Zinc | 1990 |
Reduced NMDA receptor-ion channel function in the vitamin B-6 restricted neonatal rat brain.
Topics: Animals; Animals, Newborn; Brain Chemistry; Cerebral Cortex; Dizocilpine Maleate; Female; Hippocampus; In Vitro Techniques; Ion Channels; Kainic Acid; Kinetics; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Vitamin B 6 Deficiency | 1991 |
Currents through single glutamate receptor channels in outside-out patches from rat cerebellar granule cells.
Topics: Animals; Aspartic Acid; Cells, Cultured; Cerebellum; Glutamates; Ion Channel Gating; Ion Channels; Kainic Acid; Membrane Potentials; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Time Factors | 1991 |
Multiple effects of tetraethylammonium on N-methyl-D-aspartate receptor-channels in mouse brain neurons in cell culture.
Topics: Animals; Brain; Dose-Response Relationship, Drug; Glycine; Ion Channel Gating; Ion Channels; Kainic Acid; Membrane Potentials; Mice; N-Methylaspartate; Quisqualic Acid; Receptors, Cell Surface; Tetraethylammonium; Tetraethylammonium Compounds | 1991 |
Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells.
Topics: Animals; Biological Transport; Calcium; Cells, Cultured; Cerebellum; Cobalt; Glutamates; Hippocampus; In Vitro Techniques; Ion Channel Gating; Ion Channels; Kainic Acid; Manganese; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Kainic Acid; Receptors, Neurotransmitter | 1991 |
Behavioral sensitization to kainic acid and quisqualic acid in mice: comparison to NMDA and substance P responses.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Behavior, Animal; Capsaicin; Concanavalin A; Drug Tolerance; GABA Antagonists; Glycine; Injections, Spinal; Kainic Acid; Mice; N-Methylaspartate; Quisqualic Acid; Spinal Cord; Substance P | 1991 |
Absence of implication of L-arginine/nitric oxide pathway on neuronal cell injury induced by L-glutamate or hypoxia.
Topics: 1-Methyl-3-isobutylxanthine; Animals; Arginine; Brain; Cell Hypoxia; Cells, Cultured; Cyclic GMP; Dizocilpine Maleate; Fetus; Glutamates; Glutamic Acid; Kainic Acid; Kinetics; N-Methylaspartate; Neuroglia; Neurons; Nitric Oxide; Nitroarginine; Nitroprusside; omega-N-Methylarginine; Quisqualic Acid; Rats | 1991 |
Glutamate-activated channels in adult rat ventral spinal cord cells.
Topics: 2-Amino-5-phosphonovalerate; Animals; Cell Membrane; Chick Embryo; Glutamates; In Vitro Techniques; Ion Channels; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Spinal Cord | 1991 |
Glutamate receptor agonist-induced inward currents in spinal dorsal horn neurons dissociated from the adult rats.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Ion Channels; Kainic Acid; N-Methylaspartate; Nerve Fibers; Neurons; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord | 1991 |
Mitogenic effects of excitatory amino acids in the adult rat retina.
Topics: Animals; Cell Count; Dose-Response Relationship, Drug; Kainic Acid; Male; Mitosis; N-Methylaspartate; Neuroglia; Ouabain; Quisqualic Acid; Rats; Retina | 1991 |
The actions of a conformationally restricted analogue of aspartic acid on mammalian spinal neurones.
Topics: Action Potentials; Animals; Aspartic Acid; Cycloleucine; Kainic Acid; Molecular Conformation; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Spinal Cord; Stereoisomerism | 1991 |
Neuroprotectant effects of LY274614, a structurally novel systemically active competitive NMDA receptor antagonist.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anticonvulsants; Binding, Competitive; Brain; Dose-Response Relationship, Drug; Female; Ibotenic Acid; Isoquinolines; Kainic Acid; Male; N-Methylaspartate; Nerve Degeneration; Quisqualic Acid; Radioligand Assay; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate | 1991 |
Depression of purine induced inhibition during NMDA receptor mediated activation of hippocampal pyramidal cells--an iontophoretic study.
Topics: Acetylcholine; Action Potentials; Adenosine Monophosphate; Animals; Electrodes; Female; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Iontophoresis; N-Methylaspartate; Purines; Pyramidal Tracts; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate | 1991 |
A test of the spine resistance hypothesis for LTP expression.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cold Temperature; Evoked Potentials; Hippocampus; Ibotenic Acid; In Vitro Techniques; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Neurotransmitter; Spinal Cord; Synapses; Synaptic Transmission | 1991 |
GABA accelerates excitotoxic cell death in cortical cultures: protection by blockers of GABA-gated chloride channels.
Topics: Animals; Cell Survival; Cells, Cultured; Cerebral Cortex; Chloride Channels; Chlorides; gamma-Aminobutyric Acid; Ion Channel Gating; Kainic Acid; Membrane Proteins; N-Methylaspartate; Neurotoxins; Quisqualic Acid; Rats | 1991 |
GDP beta S antagonizes whole-cell current responses to excitatory amino acids.
Topics: Animals; Guanosine Diphosphate; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Rats; Retinal Ganglion Cells; Superior Colliculi; Thionucleotides | 1991 |
NMDA-, kainate- and quisqualate-stimulated release of taurine from electrophysiologically monitored rat hippocampal slices.
Topics: Animals; Electric Stimulation; Evoked Potentials; Hippocampus; In Vitro Techniques; Kainic Acid; Male; Membrane Potentials; N-Methylaspartate; Perfusion; Pyramidal Tracts; Quisqualic Acid; Rats; Rats, Inbred Strains; Taurine | 1991 |
2-Chloroadenosine attenuates NMDA, kainate, and quisqualate toxicity.
Topics: 2-Chloroadenosine; Animals; Corpus Striatum; Injections; Kainic Acid; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Inbred Strains | 1991 |
Topographical heterogeneity of glutamate agonist-induced calcium increase in hippocampus.
Topics: Animals; Calcium; Hippocampus; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter | 1990 |
Regulation of the NMDA receptor by redox phenomena: inhibitory role of ascorbate.
Topics: Animals; Ascorbic Acid; Cerebral Cortex; Dithiothreitol; Electrophysiology; In Vitro Techniques; Ion Channel Gating; Kainic Acid; Kinetics; Mercaptoethanol; N-Methylaspartate; Neurons; Oxidation-Reduction; Penicillamine; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1990 |
Structure-activity relationship on excitatory amino acid receptors.
Topics: Central Nervous System; Humans; Kainic Acid; Models, Molecular; Molecular Conformation; N-Methylaspartate; Quisqualic Acid; Receptors, Neurotransmitter; Structure-Activity Relationship | 1990 |
Failure of sigma-receptor ligands to reduce the excitatory actions of N-methyl-DL-aspartate on rat spinal neurons in-vivo.
Topics: Animals; Aspartic Acid; Haloperidol; In Vitro Techniques; Kainic Acid; Ligands; N-Methylaspartate; Neurons; Oxadiazoles; Piperidines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, delta; Spinal Cord; Stereoisomerism | 1990 |
Quisqualate activates N-methyl-D-aspartate receptor channels in hippocampal neurons maintained in culture.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Electric Stimulation; Glycine; Hippocampus; Indoles; Ion Channel Gating; N-Methylaspartate; Neural Conduction; Neuromuscular Depolarizing Agents; Oxadiazoles; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1990 |
Acute- and long-term glutamate-mediated regulation of [Ca++]i in rat hippocampal pyramidal neurons in vitro.
Topics: Animals; Aspartic Acid; Calcium; Cells, Cultured; Glutamates; Glutamic Acid; Hippocampus; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter | 1990 |
Differential expression of excitatory amino acid receptor subtypes in cultured cerebellar neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Cell Survival; Cells, Cultured; Cerebellum; Glutamates; Glutamic Acid; Ibotenic Acid; Inositol Phosphates; Kainic Acid; Kinetics; N-Methylaspartate; Neurons; Oxadiazoles; Potassium Chloride; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter | 1990 |
An electrophysiological study of the action of N-methyl-D-aspartate on excitatory synaptic transmission in the optic tectum of the frog in vitro.
Topics: Animals; Aspartic Acid; Dose-Response Relationship, Drug; Electrophysiology; Glutamates; Glutamic Acid; Glycine; In Vitro Techniques; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Quisqualic Acid; Rana temporaria; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Superior Colliculi; Synapses; Synaptic Transmission | 1990 |
Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Arachidonic Acid; Arachidonic Acids; Aspartic Acid; Cells, Cultured; Corpus Striatum; Cycloleucine; Electrophysiology; Glutamates; Glutamic Acid; Ibotenic Acid; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Synapses | 1990 |
Spinal antinociceptive effects of excitatory amino acid antagonists: quisqualate modulates the action of N-methyl-D-aspartate.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Analgesics; Animals; Aspartic Acid; Dipeptides; Electric Stimulation; Glutamine; Kynurenic Acid; Male; Mice; Motor Activity; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Spinal Cord; Vocalization, Animal | 1990 |
Effect of 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX) on dorsal root-, NMDA-, kainate- and quisqualate-mediated depolarization of rat motoneurones in vitro.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Ganglia, Spinal; Hexamethonium Compounds; In Vitro Techniques; Kainic Acid; Motor Neurons; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Synapses; Tetrodotoxin | 1990 |
The correlation between excitatory amino acid-induced current responses and excitotoxicity in striatal cultures.
Topics: Animals; Cells, Cultured; Corpus Striatum; Glutamates; Glutamic Acid; Glycine; Membrane Potentials; N-Methylaspartate; Neurotransmitter Agents; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter | 1990 |
(2S,3S,4S) alpha-(carboxycyclopropyl)glycine is a novel agonist of metabotropic glutamate receptors.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids, Dicarboxylic; Animals; Electric Stimulation; Ibotenic Acid; In Vitro Techniques; Inositol Phosphates; Kainic Acid; N-Methylaspartate; Piperazines; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred F344; Receptors, Glutamate; Receptors, Neurotransmitter; Synaptosomes | 1990 |
Chronic administration of MK-801 and the NMDA receptor: further evidence for reduced sensitivity of the primary acceptor site from studies with the cortical wedge preparation.
Topics: Animals; Binding, Competitive; Cerebral Cortex; Dizocilpine Maleate; Glutamates; In Vitro Techniques; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate | 1990 |
Excitatory amino acid receptors of guinea pig medial nucleus tractus solitarius neurons.
Topics: Amino Acids; Animals; Glutamates; Glutamic Acid; Guinea Pigs; Kainic Acid; Medulla Oblongata; N-Methylaspartate; Neurons; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface | 1990 |
Glutamate, the dominant excitatory transmitter in neuroendocrine regulation.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Axons; Calcium; Electric Stimulation; Glutamates; Glutamic Acid; Hypothalamus; Immunohistochemistry; Kainic Acid; Microscopy, Electron; N-Methylaspartate; Neurons; Neurotransmitter Agents; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Second Messenger Systems; Synapses | 1990 |
Lack of excitotoxic cell death in serum-free cultures of rat cerebral cortex.
Topics: Amino Acids; Animals; Blood Physiological Phenomena; Cell Survival; Cells, Cultured; Cerebral Cortex; Culture Media; Glutamates; Glutamic Acid; Kainic Acid; L-Lactate Dehydrogenase; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Inbred Strains | 1990 |
Excitatory postsynaptic potentials in rat neocortical neurons in vitro. III. Effects of a quinoxalinedione non-NMDA receptor antagonist.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Cerebral Cortex; Electric Stimulation; Electrodes, Implanted; Evoked Potentials; Horseradish Peroxidase; Iontophoresis; Isoquinolines; Male; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Synapses; Synaptic Transmission | 1990 |
Quisqualate-induced changes in extracellular sodium and calcium concentrations persist in the combined presence of NMDA and non-NMDA receptor antagonists in rat hippocampal slices.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Evoked Potentials; Extracellular Space; Glutamates; Glutamic Acid; Hippocampus; Ibotenic Acid; In Vitro Techniques; Ketamine; Membrane Potentials; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Sodium | 1990 |
Glutamate- and aspartate-induced extracellular potassium and calcium shifts and their relation to those of kainate, quisqualate and N-methyl-D-aspartate in the isolated turtle cerebellum.
Topics: Amino Acids; Animals; Aspartic Acid; Calcium; Cerebellum; Dose-Response Relationship, Drug; Extracellular Space; Glutamates; Glutamic Acid; In Vitro Techniques; Iontophoresis; Kainic Acid; Manganese; N-Methylaspartate; Potassium; Quisqualic Acid; Turtles | 1990 |
Initiation of swimming activity in the medicinal leech by glutamate, quisqualate and kainate.
Topics: Animals; Glutamates; Glutamic Acid; Kainic Acid; Leeches; Motor Activity; N-Methylaspartate; Quisqualic Acid; Swimming | 1990 |
Characterization of Ca2(+)-mobilizing excitatory amino acid receptors in cultured chick cortical cells.
Topics: Animals; Calcium; Cells, Cultured; Cerebral Cortex; Chick Embryo; Glutamates; Glutamic Acid; Immunohistochemistry; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate | 1990 |
Neurotoxic effects of excitatory amino acids in the mouse spinal cord: quisqualate and kainate but not N-methyl-D-aspartate induce permanent neural damage.
Topics: 2-Amino-5-phosphonovalerate; Aggression; Animals; Glutamine; Kainic Acid; Male; Mice; Mice, Inbred ICR; Motor Activity; N-Methylaspartate; Neurons; Neurotoxins; Pain; Paralysis; Quisqualic Acid; Spinal Cord | 1990 |
Actions of excitatory amino acids on brisk ganglion cells in the cat retina.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Aminobutyrates; Anesthesia; Animals; Aspartic Acid; Cats; Electrodes; Glutamates; Glutamic Acid; Ibotenic Acid; Iontophoresis; Kainic Acid; N-Methylaspartate; Photic Stimulation; Quisqualic Acid; Retinal Ganglion Cells | 1990 |
Swallowing responses induced by microinjection of glutamate and glutamate agonists into the nucleus tractus solitarius of ketamine-anesthetized rats.
Topics: Animals; Deglutition; Glutamates; Glutamic Acid; Ketamine; Medulla Oblongata; Microinjections; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Inbred Strains | 1990 |
Quisqualate- and NMDA-sensitive [3H]glutamate binding in primate brain.
Topics: Animals; Autoradiography; Brain Chemistry; Cerebral Cortex; Glutamates; Glutamic Acid; Macaca fascicularis; N-Methylaspartate; Quisqualic Acid | 1990 |
Rhythmic bursting patterns induced in neurons of the rat nucleus tractus solitarii, in vitro, in response to N-methyl-D-aspartate.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Glutamates; Glutamic Acid; Male; Medulla Oblongata; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains | 1990 |
6,7-Dinitroquinoxaline-2,3-dione and 6-nitro,7-cyanoquinoxaline-2,3-dione antagonize responses mediated by N-methyl-D-aspartate and NMDA-associated glycine recognition sites in vivo: measurements of cerebellar cyclic-GMP.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cerebellum; Cyclic AMP; Glycine; Harmaline; Kinetics; Male; Mice; N-Methylaspartate; Pyrrolidinones; Quinoxalines; Quisqualic Acid; Serine | 1990 |
N-methyl-D-aspartate, kainate and quisqualate release endogenous adenosine from rat cortical slices.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Adenosine; Animals; Calcium; Cerebral Cortex; Dipeptides; Dizocilpine Maleate; In Vitro Techniques; Kainic Acid; Kinetics; Magnesium; Male; N-Methylaspartate; Norepinephrine; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Tetrodotoxin | 1990 |
Augmentation by glycine and blockade by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) of responses to excitatory amino acids in slices of rat neocortex.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Cerebral Cortex; Drug Interactions; Electrophysiology; Female; Glycine; Homocysteine; Ibotenic Acid; In Vitro Techniques; Kinetics; Male; Membrane Potentials; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Rats; Somatosensory Cortex | 1990 |
Glutamate toxicity in immature cortical neurons precedes development of glutamate receptor currents.
Topics: Animals; Cerebral Cortex; Electrophysiology; Female; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; N-Methylaspartate; Neurons; Pregnancy; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter | 1990 |
Development and regulation of excitatory amino acid receptors involved in the release of arachidonic acid in cultured hippocampal neural cells.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aging; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Arachidonic Acid; Arachidonic Acids; Astrocytes; Cells, Cultured; Female; Hippocampus; Ibotenic Acid; N-Methylaspartate; Neurons; Pregnancy; Quinoxalines; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface | 1990 |
Calcimycin potentiates responses of rat hippocampal neurons to N-methyl-D-aspartate.
Topics: Animals; Calcimycin; Drug Synergism; Hippocampus; In Vitro Techniques; Kinetics; Membrane Potentials; N-Methylaspartate; Neurons; Pyramidal Tracts; Quisqualic Acid; Rats | 1991 |
Philanthotoxin blocks quisqualate-, AMPA- and kainate-, but not NMDA-, induced excitation of rat brainstem neurones in vivo.
Topics: Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain Stem; Female; Ibotenic Acid; Kainic Acid; N-Methylaspartate; Neurons; Polyamines; Quisqualic Acid; Rats; Rats, Inbred Strains; Wasp Venoms | 1990 |
Differential effects of antiepileptic drugs and beta-carbolines on seizures induced by excitatory amino acids.
Topics: Animals; Anticonvulsants; Carbolines; Convulsants; Kainic Acid; Male; Mice; Mice, Inbred Strains; N-Methylaspartate; Quisqualic Acid; Seizures | 1990 |
Antimyoclonic effect of MK-801: a possible role for NMDA receptors in developmental myoclonus of the neonatal rat.
Topics: Aminobutyrates; Analysis of Variance; Animals; Animals, Newborn; Anticonvulsants; Clonazepam; Diazepam; Dizocilpine Maleate; Dose-Response Relationship, Drug; Female; Isoxazoles; Kynurenic Acid; Male; Myoclonus; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Strychnine | 1990 |
NMDA antagonist properties of gamma-L-glutamyl-L-aspartate demonstrated on chemically induced seizures in mice.
Topics: Animals; Anticonvulsants; Behavior, Animal; Dipeptides; Dose-Response Relationship, Drug; Injections, Intraventricular; Kainic Acid; Male; Mice; N-Methylaspartate; Pentylenetetrazole; Picrotoxin; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Seizures | 1990 |
A study in rat brain cortex synaptic vesicles of endogenous ligands for N-methyl-D-aspartate receptors.
Topics: Amino Acids; Animals; Cerebral Cortex; Chromatography, Gel; Chromatography, High Pressure Liquid; Electrophoresis; Glutamates; In Vitro Techniques; Kainic Acid; Ligands; N-Methylaspartate; Quisqualic Acid; Radioligand Assay; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Synaptic Vesicles; Tissue Extracts; Ultracentrifugation | 1990 |
Serotonin suppresses N-methyl-D-aspartate responses in acutely isolated spinal dorsal horn neurons of the rat.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Drug Synergism; Glycine; In Vitro Techniques; Indoles; Kainic Acid; Ketanserin; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Serotonin; Serotonin Antagonists; Spinal Cord; Tetrahydronaphthalenes; Tropisetron | 1990 |
Elevation of Met-enkephalin-like immunoreactivity in the rat striatum and globus pallidus following the focal injection of excitotoxins.
Topics: Animals; Corpus Striatum; Enkephalin, Methionine; Globus Pallidus; Huntington Disease; Injections; Kainic Acid; Male; N-Methylaspartate; Neurotoxins; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Radioimmunoassay; Rats; Rats, Inbred Strains | 1990 |
MK-801 blocked the functional NMDA receptors in identified cerebellar neurons.
Topics: Animals; Calcium; Cerebellum; Dizocilpine Maleate; Drug Synergism; Hippocampus; Mice; Mice, Inbred ICR; N-Methylaspartate; Neurons; Purkinje Cells; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Tetrodotoxin | 1990 |
Changes in excitatory amino acid modulation of phosphoinositide metabolism during development.
Topics: Aging; Animals; Aspartic Acid; Brain; Inositol Phosphates; N-Methylaspartate; Oxadiazoles; Phosphatidylinositols; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface | 1990 |
Excitatory amino acid receptors on sustained retinal ganglion cells in the kitten during the critical period of development.
Topics: Action Potentials; Aging; Animals; Aspartic Acid; Cats; Kainic Acid; N-Methylaspartate; Oxadiazoles; Photic Stimulation; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Retina; Retinal Ganglion Cells; Visual Pathways | 1990 |
Selective blockade of N-methyl-D-aspartate (NMDA)-induced convulsions by NMDA antagonists and putative glycine antagonists: relationship with phencyclidine-like behavioral effects.
Topics: Animals; Aspartic Acid; Dose-Response Relationship, Drug; Glycine; Kainic Acid; Kynurenic Acid; Male; Mice; Motor Activity; N-Methylaspartate; Oxadiazoles; Phencyclidine; Pyrrolidinones; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Seizures | 1990 |
Serum and depolarizing agents cause acute neurotoxicity in cultured cerebellar granule cells: role of the glutamate receptor responsive to N-methyl-D-aspartate.
Topics: Animals; Anticonvulsants; Aspartic Acid; Blood; Cell Survival; Cells, Cultured; Cerebellum; Culture Media; Cytoplasmic Granules; Dibenzocycloheptenes; Dizocilpine Maleate; Glutamates; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Piperazines; Potassium Chloride; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; Veratridine | 1990 |
2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Brain Ischemia; Cerebral Cortex; Hippocampus; Ibotenic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neurons; Oxadiazoles; Pyramidal Tracts; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, Neurotransmitter | 1990 |
Glutamate receptor agonists cause efflux of endogenous neuroactive amino acids from cerebellar neurons in culture.
Topics: Amino Acids; Animals; Aspartic Acid; Calcium; Cells, Cultured; Cerebellum; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter | 1990 |
Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rabbit retina. Evidence for a specific quisqualate receptor subtype associated with neurones.
Topics: Animals; Aspartic Acid; Calcium; Carbachol; Dose-Response Relationship, Drug; Ibotenic Acid; In Vitro Techniques; Inositol Phosphates; Kainic Acid; N-Methylaspartate; Norepinephrine; Oxadiazoles; Quisqualic Acid; Rabbits; Receptors, AMPA; Receptors, Neurotransmitter; Retina | 1990 |
6,7-Dinitroquinoxaline-2,3-dione blocks the cytotoxicity of N-methyl-D-aspartate and kainate, but not quisqualate, in cortical cultures.
Topics: Animals; Aspartic Acid; Cell Survival; Cells, Cultured; Cerebral Cortex; Hippocampus; Kainic Acid; Ligands; N-Methylaspartate; Neurotoxins; Norepinephrine; Oxadiazoles; Quinoxalines; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1990 |
Subtypes of excitatory amino acid receptors involved in the stimulation of [3H]dopamine release from cell cultures of rat ventral mesencephalon.
Topics: Animals; Aspartic Acid; Cells, Cultured; Dopamine; Kynurenic Acid; Magnesium; Mesencephalon; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1990 |
N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors.
Topics: Animals; Aspartic Acid; Guanidines; Haloperidol; In Vitro Techniques; Iontophoresis; Kainic Acid; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, sigma; Spiperone | 1990 |
Excitatory amino acids and cardiovascular apparatus: experimental studies on conscious rats with L-glutamate, N-methyl-D-aspartate, kainate and quisqualate.
Topics: Amino Acids; Animals; Aspartic Acid; Cardiovascular Physiological Phenomena; Cardiovascular System; Glutamates; Injections, Intraventricular; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Synaptic Transmission | 1990 |
Glutamate-receptor-mediated regulation of the cytoplasmic free calcium level in cultured cerebellar granule cells.
Topics: Aspartic Acid; Calcium; Cells, Cultured; Cerebellum; Cytoplasm; Dibenzocycloheptenes; Dizocilpine Maleate; gamma-Aminobutyric Acid; Glutamates; Glycine; Kainic Acid; Magnesium; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter | 1990 |
Pre- and postsynaptic excitatory action of glutamate agonists on frog vestibular receptors.
Topics: Afferent Pathways; Animals; Aspartic Acid; Glutamates; In Vitro Techniques; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana esculenta; Receptors, Glutamate; Receptors, Neurotransmitter; Synapses; Synaptic Transmission; Vestibule, Labyrinth | 1990 |
Glutaminergic responses of neuropile glial cells and Retzius neurones in the leech central nervous system.
Topics: Animals; Central Nervous System; Glutamine; Kainic Acid; Leeches; Magnesium; Membrane Potentials; Microelectrodes; N-Methylaspartate; Neuroglia; Neuromuscular Depolarizing Agents; Neurons; Potassium; Quisqualic Acid; Sodium; Synaptic Transmission; Tubocurarine | 1990 |
Excitatory amino acid response in isolated nucleus tractus solitarii neurons of the rat.
Topics: Amino Acids; Animals; Aspartic Acid; Electrophysiology; Glycine; In Vitro Techniques; Kainic Acid; Medulla Oblongata; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1990 |
Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture: effect of kainic acid.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cell Survival; Cells, Cultured; Cerebellum; Dipeptides; Dizocilpine Maleate; DNA; Electric Stimulation; Glutamine; Ibotenic Acid; Kainic Acid; L-Lactate Dehydrogenase; N-Methylaspartate; Potassium; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1990 |
Dopamine release in the nucleus caudatus and in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely-moving rats.
Topics: Animals; Behavior, Animal; Caudate Nucleus; Dialysis; Dopamine; Glutamates; Haloperidol; Kainic Acid; Male; N-Methylaspartate; Nucleus Accumbens; Piperazines; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter | 1990 |
Efflux of 45calcium from cultured primary astrocytes: effects of glutamate receptor agonists and antagonists.
Topics: Animals; Animals, Newborn; Astrocytes; Calcium; Calcium Radioisotopes; Cells, Cultured; Excitatory Amino Acid Antagonists; Glutamates; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Valine | 1990 |
Non-NMDA receptor mediates cytoplasmic Ca2+ elevation in cultured hippocampal neurones.
Topics: Animals; Calcium; Calcium Channels; Cells, Cultured; Culture Media; Cytoplasm; Hippocampus; Image Processing, Computer-Assisted; Kainic Acid; N-Methylaspartate; Neurons; Potassium Chloride; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface; Sodium; Spectrometry, Fluorescence; Synapses; Synaptic Transmission | 1990 |
Role of endogenous taurine on the glutamate analogue-induced neurotoxicity in the rat hippocampus in vivo.
Topics: Animals; Aspartic Acid; Extracellular Space; Hippocampus; Kainic Acid; N-Methylaspartate; Osmolar Concentration; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Sucrose; Taurine | 1990 |
Microionophoretic study with milacemide, a glycine precursor, on mammalian central nervous system cells.
Topics: Acetamides; Animals; Aspartic Acid; Brain; Cats; Electric Stimulation; Evoked Potentials; gamma-Aminobutyric Acid; Glycine; Iontophoresis; Kainic Acid; Monoamine Oxidase Inhibitors; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid | 1990 |
NMDA and quisqualate reduce a Ca-dependent K+ current by a protein kinase-mediated mechanism.
Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Animals; Aspartic Acid; Calcium; Enzyme Inhibitors; Hippocampus; Isoquinolines; Male; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Piperazines; Potassium; Protein Kinases; Quisqualic Acid; Rats; Rats, Inbred F344; Second Messenger Systems | 1990 |
GABA does not protect cerebro-cortical cultures against excitotoxic cell death.
Topics: Animals; Aspartic Acid; Cell Survival; Cerebral Cortex; Female; gamma-Aminobutyric Acid; Glutamates; Kainic Acid; L-Lactate Dehydrogenase; N-Methylaspartate; Neurotoxins; Oxadiazoles; Pregnancy; Quisqualic Acid; Rats; Rats, Inbred Strains | 1990 |
Neuropeptide Y selectively potentiates N-methyl-D-aspartate-induced neuronal activation.
Topics: Animals; Aspartic Acid; Drug Synergism; Haloperidol; Iontophoresis; Kainic Acid; Male; N-Methylaspartate; Neurons; Neuropeptide Y; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains | 1990 |
Laminar profiles of N-methyl-D-aspartate- and quisqualate-induced [Na+]o changes in rat hippocampus.
Topics: Animals; Electric Stimulation; Hippocampus; In Vitro Techniques; Iontophoresis; Membrane Potentials; N-Methylaspartate; Pyramidal Tracts; Quisqualic Acid; Rats; Rats, Inbred Strains; Sodium; Tetrodotoxin | 1990 |
Systemic administration of MK-801 protects against N-methyl-D-aspartate- and quisqualate-mediated neurotoxicity in perinatal rats.
Topics: Animals; Animals, Newborn; Behavior, Animal; Brain; Dizocilpine Maleate; Electroencephalography; Female; Injections; Injections, Intraperitoneal; Male; N-Methylaspartate; Neurotoxins; Quisqualic Acid; Rats; Rats, Inbred Strains | 1990 |
Sympathetic preganglionic neurones in neonatal rat spinal cord in vitro: electrophysiological characteristics and the effects of selective excitatory amino acid receptor agonists.
Topics: Animals; Animals, Newborn; Calcium; Evoked Potentials; Ganglia, Sympathetic; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Spinal Cord; Synapses; Tetraethylammonium; Tetraethylammonium Compounds | 1990 |
Anesthetic effects on glutamate-stimulated increase in intraneuronal calcium.
Topics: Amino Acids; Anesthetics; Animals; Calcium; Calcium Channel Blockers; Cells, Cultured; Dose-Response Relationship, Drug; Fura-2; Glutamates; Halothane; Hippocampus; Intracellular Fluid; Isoflurane; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Spectrometry, Fluorescence; Verapamil | 1990 |
[The distribution of kainate and quisqualate receptors in the rat cerebellum].
Topics: Aminobutyrates; Animals; Cells, Cultured; Dose-Response Relationship, Drug; Kainic Acid; Membrane Potentials; N-Methylaspartate; Purkinje Cells; Quisqualic Acid; Rats; Receptors, Drug | 1990 |
Kainic acid on neostriatal neurons intracellularly recorded in vitro: electrophysiological evidence for differential neuronal sensitivity.
Topics: Action Potentials; Animals; Cell Membrane; Corpus Striatum; Dose-Response Relationship, Drug; In Vitro Techniques; Kainic Acid; Kynurenic Acid; Male; Membrane Potentials; N-Methylaspartate; Nerve Degeneration; Neural Conduction; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains | 1990 |
Suppression by extracellular K+ of N-methyl-D-aspartate responses in cultured rat hippocampal neurons.
Topics: Animals; Cells, Cultured; Cesium; Glycine; Hippocampus; Iontophoresis; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurons; Potassium; Quisqualic Acid; Rats | 1990 |
Kainic acid responses and toxicity show pronounced Ca2+ dependence.
Topics: Animals; Aspartic Acid; Calcium; Drug Interactions; In Vitro Techniques; Ion Channels; Iontophoresis; Kainic Acid; Limbic System; Magnesium; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats | 1985 |
Evidence that excitatory amino acids not only activate the receptor channel complex but also lead to use-dependent block.
Topics: Amino Acids; Animals; Aspartic Acid; Chick Embryo; Glutamates; Glutamic Acid; Ion Channels; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Neurotransmitter; Spinal Cord | 1986 |
Phencyclidine selectively blocks a spinal action of N-methyl-D-aspartate in mice.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Dipeptides; Drug Interactions; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Glutamates; Glutamic Acid; Injections, Spinal; Kainic Acid; Male; Mice; N-Methylaspartate; Norepinephrine; Oxadiazoles; Phencyclidine; Quisqualic Acid; Spinal Cord; Substance P; Tetrazoles; Valine | 1986 |
Characterization of excitatory amino acid receptors expressed by embryonic chick motoneurons in vitro.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Chick Embryo; Dose-Response Relationship, Drug; Electrophysiology; Excitatory Amino Acid Antagonists; Glutamates; In Vitro Techniques; Ion Channels; Kainic Acid; Membrane Potentials; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord; Valine | 1986 |
Evidence for a magnesium-insensitive membrane resistance increase during NMDA-induced depolarizations in rat neocortical neurons in vitro.
Topics: Animals; Aspartic Acid; Cell Membrane; Electric Conductivity; Frontal Lobe; Glutamates; Glutamic Acid; Ion Channels; Magnesium; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains | 1987 |
A study of amino acid-activated currents recorded from frog motoneurones in vitro.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anterior Horn Cells; Aspartic Acid; Glutamates; Glutamic Acid; In Vitro Techniques; Ion Channels; Membrane Potentials; Motor Neurons; N-Methylaspartate; Neural Conduction; Oxadiazoles; Quisqualic Acid; Rana temporaria; Valine | 1987 |
Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels.
Topics: Action Potentials; Animals; Anticonvulsants; Aspartic Acid; Cells, Cultured; Dibenzocycloheptenes; Dizocilpine Maleate; Ion Channels; Kainic Acid; Magnesium; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Visual Cortex | 1988 |
Noise and single channels activated by excitatory amino acids in rat cerebellar granule neurones.
Topics: Action Potentials; Amino Acids; Animals; Aspartic Acid; Cells, Cultured; Cerebellum; Glutamates; Glutamic Acid; Ion Channels; Kainic Acid; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter | 1988 |
N-methyl-D-aspartate activates different channels than do kainate and quisqualate.
Topics: Animals; Aspartic Acid; Brain Chemistry; Electric Conductivity; Female; Ion Channels; Kainic Acid; Magnesium; Male; N-Methylaspartate; Oocytes; Oxadiazoles; Phencyclidine; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; RNA, Messenger; Xenopus laevis | 1989 |
Ethanol inhibits NMDA-activated ion current in hippocampal neurons.
Topics: 1-Butanol; Aspartic Acid; Butanols; Calcium Channels; Chloride Channels; Chlorides; Electric Conductivity; Ethanol; gamma-Aminobutyric Acid; Hippocampus; Humans; Ion Channels; Kainic Acid; Membrane Proteins; Methanol; N-Methylaspartate; Neurons; Oxadiazoles; Pentanols; Quisqualic Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Sodium Channels | 1989 |
Muscimol, gamma-aminobutyric acidA receptors and excitatory amino acids in the mouse spinal cord.
Topics: Analgesia; Animals; Aspartic Acid; Baclofen; Behavior, Animal; Bicuculline; Kainic Acid; Male; Mice; Muscimol; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, GABA-A; Spinal Cord; Substance P | 1989 |
Differential dependence on Ca2+ of N-methyl-D-aspartate and quisqualate neurotoxicity in young rat hippocampal slices.
Topics: Animals; Aspartic Acid; Calcium; Cell Survival; Chlorides; Hippocampus; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Staining and Labeling | 1989 |
Unique properties of non-N-methyl-D-aspartate excitatory responses in cultured purkinje neurons.
Topics: Action Potentials; Animals; Aspartic Acid; Cadmium; Calcium; Cations, Divalent; Choline; Electric Conductivity; Ion Channels; Kainic Acid; Kynurenic Acid; Magnesium; N-Methylaspartate; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Sodium; Sucrose; Tetrodotoxin | 1989 |
Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids.
Topics: Animals; Aspartic Acid; Astrocytes; Cells, Cultured; Cerebellum; Convulsants; Electric Conductivity; Evoked Potentials; Glutamates; Glutamic Acid; Ion Channels; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Synaptic Transmission | 1989 |
Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Aspartic Acid; Calcitonin Gene-Related Peptide; Drug Synergism; Electric Conductivity; Electrophysiology; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Glycine; Ibotenic Acid; Kainic Acid; N-Methylaspartate; Neurons; Neuropeptides; Oxadiazoles; Peptides; Quisqualic Acid; Rats; Rats, Inbred Strains; Spinal Cord; Substance P | 1989 |
Open channel block of NMDA receptor responses evoked by tricyclic antidepressants.
Topics: Animals; Antidepressive Agents, Tricyclic; Aspartic Acid; Cells, Cultured; Convulsants; Desipramine; Embryo, Mammalian; Hippocampus; Ion Channels; Kinetics; Membrane Potentials; Mice; Mice, Inbred C57BL; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1989 |
Differential effects of excitatory amino acids on photoreceptors of the chick retina: an electron-microscopical study using the zinc-iodide-osmium technique.
Topics: Amino Acids; Animals; Histological Techniques; Iodides; Kainic Acid; Microscopy, Electron; N-Methylaspartate; Osmium; Photoreceptor Cells; Quisqualic Acid; Reference Values; Retina; Time Factors; Zinc | 1989 |
Inhibition of inositol phospholipid synthesis and norepinephrine-stimulated hydrolysis in rat brain slices by excitatory amino acids.
Topics: Animals; Aspartic Acid; Brain; Brain Mapping; Glutamates; In Vitro Techniques; Inositol; Inositol Phosphates; Male; N-Methylaspartate; Norepinephrine; Oxadiazoles; Phosphatidylinositols; Quisqualic Acid; Rats; Receptors, Adrenergic, alpha | 1989 |
In primary cultures of cerebellar granule cells the activation of N-methyl-D-aspartate-sensitive glutamate receptors induces c-fos mRNA expression.
Topics: Animals; Aspartic Acid; Blotting, Northern; Calcium; Cells, Cultured; Cerebellum; Gene Expression Regulation; Glutamates; Glycine; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Oxadiazoles; Phencyclidine; Protein Kinase C; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-fos; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; RNA, Messenger; Transcription, Genetic | 1989 |
Pharmacological characterization of the glutamate receptor in cultured astrocytes.
Topics: Animals; Aspartic Acid; Astrocytes; Cells, Cultured; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter | 1989 |
Modulation of NMDA receptor-mediated responses by glycine and D-serine in the rat thalamus in vivo.
Topics: Action Potentials; Animals; Aspartic Acid; Glycine; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Serine; Strychnine; Thalamus | 1989 |
Beta-N-oxalylamino-L-alanine action on glutamate receptors.
Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids, Diamino; Animals; Aspartic Acid; beta-Alanine; Binding, Competitive; Brain; Cerebellum; Cerebral Cortex; Corpus Striatum; Hippocampus; Ibotenic Acid; Kainic Acid; Male; Mice; N-Methylaspartate; Oxadiazoles; Piperazines; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord; Synaptic Membranes; Thiocyanates | 1989 |
Neurotoxicity of excitatory amino acid receptor agonists in young rat hippocampal slices.
Topics: Animals; Aspartic Acid; Female; Hippocampus; Kainic Acid; Male; N-Methylaspartate; Neurotoxins; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Time Factors | 1989 |
Effects of pentobarbitone, ketamine and lignocaine on synaptic transmission in the rat olfactory cortex in vitro.
Topics: Action Potentials; Animals; Aspartic Acid; Cerebral Cortex; Depression, Chemical; Dose-Response Relationship, Drug; gamma-Aminobutyric Acid; In Vitro Techniques; Ketamine; Lidocaine; Male; N-Methylaspartate; Olfactory Pathways; Oxadiazoles; Pentobarbital; Quisqualic Acid; Rats; Rats, Inbred Strains; Synapses; Synaptic Transmission | 1989 |
Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Aminobutyrates; Animals; Aspartic Acid; Cycloleucine; Hippocampus; Ibotenic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Phosphatidylinositols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1989 |
Antagonism of monosynaptic excitations in the mouse olfactory cortex slice by 6,7-dinitroquinoxaline-2,3-dione.
Topics: Animals; Aspartic Acid; Cerebral Cortex; In Vitro Techniques; Male; Mice; N-Methylaspartate; Oxadiazoles; Pyramidal Tracts; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, Kainic Acid; Receptors, Neurotransmitter; Reflex, Monosynaptic; Synapses; Synaptic Transmission; Valine | 1989 |
A quantitative description of excitatory amino acid neurotransmitter responses on cultured embryonic Xenopus spinal neurons.
Topics: Animals; Aspartic Acid; Embryo, Nonmammalian; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Xenopus laevis | 1989 |
Properties of excitatory amino acid receptors on sustained ganglion cells in the cat retina.
Topics: Action Potentials; Animals; Aspartic Acid; Cats; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Retina; Retinal Ganglion Cells | 1989 |
Reduced neuroexcitatory effect of domoic acid following mossy fiber denervation of the rat dorsal hippocampus: further evidence that toxicity of domoic acid involves kainate receptor activation.
Topics: Animals; Aspartic Acid; Colchicine; Hippocampus; Kainic Acid; Male; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Oxadiazoles; Pyramidal Tracts; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Kainic Acid; Receptors, Neurotransmitter | 1989 |
Non-N-methyl-D-aspartate receptors may mediate ipsilateral excitation at lateral superior olivary synapses.
Topics: Acoustic Stimulation; Action Potentials; Animals; Aspartic Acid; Auditory Pathways; Chinchilla; Dose-Response Relationship, Drug; Functional Laterality; Kainic Acid; N-Methylaspartate; Olivary Nucleus; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface | 1989 |
Kainate evokes the release of endogenous glycine from striatal neurons in primary culture.
Topics: Animals; Aspartic Acid; Cells, Cultured; Corpus Striatum; Glycine; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface | 1989 |
Glutamate receptor subtypes may be classified into two major categories: a study on Xenopus oocytes injected with rat brain mRNA.
Topics: Animals; Aspartic Acid; Brain Chemistry; Electrophysiology; Glutamates; Homocysteine; Ibotenic Acid; Kainic Acid; Microinjections; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oocytes; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; RNA, Messenger; Xenopus | 1989 |
Increased response of cerebellar cGMP to kainate but not NMDA or quisqualate following barbital withdrawal from dependent rats.
Topics: Animals; Aspartic Acid; Barbital; Barbiturates; Cerebellum; Cyclic GMP; Dose-Response Relationship, Drug; Female; Injections, Intraventricular; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Substance Withdrawal Syndrome; Substance-Related Disorders | 1989 |
L-[3H]glutamate binding to a membrane preparation from crayfish muscle.
Topics: Animals; Aspartic Acid; Astacoidea; Binding, Competitive; Calcium; Cell Membrane; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Muscles; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Stereoisomerism | 1989 |
Modulation of dendritic release of dopamine by N-methyl-D-aspartate receptors in rat substantia nigra.
Topics: Amino Acids; Animals; Aspartic Acid; Calcium; Dendrites; Dopamine; Glutamates; Glutamic Acid; Glycine; Kainic Acid; Kinetics; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Substantia Nigra; Tetrodotoxin | 1989 |
Characterization of L-glutamate action on the release of endogenous dopamine from the rat caudate-putamen.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Caudate Nucleus; Dopamine; Dose-Response Relationship, Drug; Glutamates; Glutamic Acid; In Vitro Techniques; Magnesium; Male; N-Methylaspartate; Oxadiazoles; Phenazocine; Potassium; Putamen; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1989 |
Pharmacological characterization of voltage-clamped catfish rod horizontal cell responses to kainic acid.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Catfishes; Convulsants; Glutamates; Glutamic Acid; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Kinetics; N-Methylaspartate; Oxadiazoles; Photoreceptor Cells; Quisqualic Acid | 1989 |
Solubilization of quisqualate-sensitive [3H]glutamate binding activity from rat retina.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cell Membrane; Glutamates; Glutamic Acid; Kinetics; Male; N-Methylaspartate; Octoxynol; Oxadiazoles; Polyethylene Glycols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; Retina; Solubility | 1989 |
K+ differentially affects the excitatory amino acids- and carbachol-elicited inositol phosphate formation in rat brain synaptoneurosomes.
Topics: Amino Acids; Animals; Aspartic Acid; Brain Chemistry; Carbachol; Frontal Lobe; Glutamates; Glutamic Acid; Inositol Phosphates; N-Methylaspartate; Oxadiazoles; Potassium; Quisqualic Acid; Rats; Sugar Phosphates; Synaptosomes | 1989 |
6-Cyano-7-nitroquinoxaline-2,3-dione as an excitatory amino acid antagonist in area CA1 of rat hippocampus.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Aspartic Acid; Binding, Competitive; Female; Hippocampus; Ibotenic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Quinoxalines; Quisqualic Acid; Rats; Synapses | 1989 |
Excitatory amino acid receptors in rat locus coeruleus. An extracellular in vitro study.
Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Glutamates; In Vitro Techniques; Kainic Acid; Locus Coeruleus; Magnesium; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Valine | 1989 |
Excitatory amino acids enhance dissociation of zinc from soluble protein in cytosol of rat hippocampus.
Topics: Amino Acids; Animals; Aspartic Acid; Cytosol; Glutamates; Glutamic Acid; Hippocampus; In Vitro Techniques; Male; N-Methylaspartate; Nerve Tissue Proteins; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Zinc | 1989 |
Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors.
Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Cats; Electric Conductivity; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Visual Cortex; Visual Perception | 1989 |
Characterization of deep dorsal horn neurones in the rat spinal cord in vitro: synaptic and excitatory amino acid induced excitations.
Topics: Animals; Aspartic Acid; Electric Stimulation; Glutamates; Glutamic Acid; In Vitro Techniques; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Spinal Cord; Synapses | 1989 |
Transient increase of NMDA-binding sites in human hippocampus during development.
Topics: Adult; Aging; Aspartic Acid; Fetus; Glutamates; Glutamic Acid; Hippocampus; Humans; Infant; Infant, Newborn; Middle Aged; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1989 |
Selective effects of serotonin upon excitatory amino acid-induced depolarizations of Purkinje cells in cerebellar slices from young rats.
Topics: Action Potentials; Animals; Aspartic Acid; Glutamates; Glutamic Acid; In Vitro Techniques; Male; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats; Rats, Inbred Strains; Serotonin | 1989 |
[Analysis of the effect of quisqualate, N-methyl-D- aspartate and several blockers of amino acid receptors on synaptic transmission in the ampullae of Lorenzini].
Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Aminobutyrates; Animals; Aspartic Acid; Electric Fish; Evoked Potentials; Magnesium; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Sensory Receptor Cells; Skates, Fish; Synapses; Synaptic Transmission; Valine | 1989 |
Developmental changes in the chemosensitivity of rat brain synaptoneurosomes to excitatory amino acids, estimated by inositol phosphate formation.
Topics: Aging; Animals; Aspartic Acid; Carbachol; Female; Frontal Lobe; Glutamates; Glutamic Acid; Inositol Phosphates; Male; N-Methylaspartate; Norepinephrine; Oxadiazoles; Quisqualic Acid; Rats; Sugar Phosphates; Synaptosomes | 1989 |
Extracellular taurine increase in rat hippocampus evoked by specific glutamate receptor activation is related to the excitatory potency of glutamate agonists.
Topics: Action Potentials; Animals; Aspartic Acid; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter | 1989 |
Coexistence of NMDA and non-NMDA receptors on turtle horizontal cells revealed using isolated retina preparations.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Evoked Potentials, Visual; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Retina; Turtles; Valine | 1989 |
Quantitative physiological characterization of a quinoxalinedione non-NMDA receptor antagonist.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Aspartic Acid; Cells, Cultured; Dose-Response Relationship, Drug; Electrophysiology; Hippocampus; Kainic Acid; Mathematics; N-Methylaspartate; Neurons; Oxadiazoles; Quinoxalines; Quisqualic Acid; Synapses | 1989 |
Inhibition of rat brain glutamate receptors by philanthotoxin.
Topics: Animals; Aspartic Acid; Bee Venoms; Brain; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Oocytes; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Wasp Venoms; Xenopus | 1989 |
Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus by 2-amino-3-phosphonopropionate.
Topics: Alanine; Amino Acids; Animals; Animals, Newborn; Aspartic Acid; Carbachol; Chlorides; Hippocampus; Hydrolysis; Ibotenic Acid; In Vitro Techniques; Inositol; Kainic Acid; Kinetics; Lithium; Lithium Chloride; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Phosphatidylinositols; Quisqualic Acid; Rats; Rats, Inbred Strains | 1989 |
Excitatory amino acid receptor-mediated activation of solitarial deglutitive loci.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Deglutition; Dipeptides; Esophagus; Glutamates; Kainic Acid; Male; Medulla Oblongata; N-Methylaspartate; Oxadiazoles; Pharynx; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1989 |
Different classes of glutamate receptors mediate distinct behaviors in a single brainstem nucleus.
Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Avoidance Learning; Brain Stem; Electric Fish; Electric Organ; Glutamates; Glutamic Acid; Glutamine; Kainic Acid; N-Methylaspartate; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter | 1989 |
Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.
Topics: Animals; Arginine; Aspartic Acid; Cerebellum; Citrulline; Cyclic GMP; Glutamates; Glutamic Acid; Hemoglobins; In Vitro Techniques; Kainic Acid; Kinetics; N-Methylaspartate; Nitric Oxide; omega-N-Methylarginine; Oxadiazoles; Quisqualic Acid; Rats | 1989 |
Selective inhibition of excitatory amino acids by divalent cations. A novel means for distinguishing N-methyl-D-aspartic acid-, kainate- and quisqualate-mediated actions in the mouse spinal cord.
Topics: Animals; Aspartic Acid; Behavior, Animal; Calcium; Dose-Response Relationship, Drug; Glutamates; Glutamic Acid; Kainic Acid; Magnesium; Male; Mice; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Spinal Cord; Zinc | 1989 |
Quisqualate and N-methyl-D-aspartate synergistically excite cerebellar Purkinje cells as a long-term effect.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Aspartic Acid; Female; N-Methylaspartate; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats | 1989 |
The effects of potassium channel blocking agents on the responses of in vitro frog motoneurones to glutamate and other excitatory amino acids: an intracellular study.
Topics: Amino Acids; Animals; Aspartic Acid; Cell Membrane; Glutamates; Glutamic Acid; Homocysteine; In Vitro Techniques; Ion Channels; N-Methylaspartate; Oxadiazoles; Potassium; Quisqualic Acid; Rana temporaria; Spinal Cord | 1985 |
Excitatory amino acid-induced responses of frog motoneurones bathed in low Na+ media: an intracellular study.
Topics: Amino Acids; Animals; Aspartic Acid; Glutamates; Glutamic Acid; In Vitro Techniques; Ion Channels; Membrane Potentials; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana temporaria; Sodium; Spinal Cord | 1985 |
Selective depression of N-methyl-D-aspartate-mediated responses by dextrorphan in the hippocampal slice in rat.
Topics: Animals; Anticonvulsants; Aspartic Acid; Dextrorphan; Dibenzocycloheptenes; Dizocilpine Maleate; Dose-Response Relationship, Drug; Evoked Potentials; Hippocampus; In Vitro Techniques; Magnesium; Male; Morphinans; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains | 1989 |
Augmentation of glutamate responses by GABA in the rat's motorcortex in vivo.
Topics: Animals; Aspartic Acid; Baclofen; Evoked Potentials; gamma-Aminobutyric Acid; Glutamates; Motor Cortex; Muscimol; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats | 1989 |
Excitatory amino acids interfere with normal eye growth in posthatch chick.
Topics: Animals; Anterior Chamber; Aspartic Acid; Chickens; Eye; Kainic Acid; N-Methylaspartate; Organ Size; Oxadiazoles; Quisqualic Acid; Retina; Time Factors | 1989 |
Regulation of dopamine function in the nucleus accumbens of the rat by the thalamic paraventricular nucleus and adjacent midline nuclei.
Topics: Animals; Aspartic Acid; Dopamine; Electric Stimulation; Injections, Intraventricular; Male; N-Methylaspartate; Nucleus Accumbens; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Septal Nuclei; Thalamic Nuclei | 1989 |
Kynurenic acid microinjected into the nucleus tractus solitarius of rat blocks the arterial baroreflex but not responses to glutamate.
Topics: Acetylcholine; Animals; Arteries; Aspartic Acid; Blood Pressure; Excitatory Amino Acid Antagonists; Glutamates; Histocytochemistry; Kainic Acid; Kynurenic Acid; Male; Medulla Oblongata; Microinjections; N-Methylaspartate; Oxadiazoles; Pressoreceptors; Quisqualic Acid; Rats; Rats, Inbred Strains; Reflex | 1989 |
HA-966 (1-hydroxy-3-aminopyrrolidone-2) selectively reduces N-methyl-D-aspartate (NMDA)-mediated brain damage.
Topics: Animals; Animals, Newborn; Aspartic Acid; Brain Diseases; Corpus Striatum; N-Methylaspartate; Oxadiazoles; Pyrrolidinones; Quisqualic Acid; Rats; Rats, Inbred Strains | 1989 |
Estrogen administration increases neuronal responses to excitatory amino acids as a long-term effect.
Topics: Action Potentials; Animals; Aspartic Acid; Estradiol; Female; N-Methylaspartate; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats | 1989 |
Cultured cerebellar cells as an in vitro model of excitatory amino acid receptor function.
Topics: Animals; Aspartic Acid; Cells, Cultured; Cerebellum; Cyclic GMP; Kainic Acid; Models, Neurological; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Radioimmunoassay; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1987 |
Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists.
Topics: Animals; Aspartic Acid; Enkephalins; Hot Temperature; Kainic Acid; Male; Mice; N-Methylaspartate; Narcotics; Nociceptors; Oxadiazoles; Pain; Phencyclidine; Phentolamine; Quisqualic Acid; Receptors, Opioid; Receptors, sigma; Spinal Cord | 1987 |
Functional and biochemical characteristics of a putative quisqualate-type receptor in rat striatum: effect of brain lesions.
Topics: Animals; Aspartic Acid; Brain; Cerebral Cortex; Convulsants; Corpus Striatum; Dopamine; Glutamates; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Potassium; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Drug | 1986 |
NMDA-receptors on Purkinje cell dendrites in guinea pig cerebellar slices.
Topics: Animals; Aspartic Acid; Dendrites; Guinea Pigs; In Vitro Techniques; Membrane Potentials; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1987 |
New quinoxalinediones show potent antagonism of quisqualate responses in cultured mouse cortical neurons.
Topics: Animals; Aspartic Acid; Cells, Cultured; Cerebral Cortex; gamma-Aminobutyric Acid; Kainic Acid; Mice; N-Methylaspartate; Oxadiazoles; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, Drug; Sodium | 1988 |
N-methyl-D-aspartate (NMDA) receptors control respiratory off-switch in cat.
Topics: Action Potentials; Animals; Aspartic Acid; Cats; Dibenzocycloheptenes; Dizocilpine Maleate; Iontophoresis; Ketamine; N-Methylaspartate; Oxadiazoles; Phencyclidine; Phrenic Nerve; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Respiration; Respiratory Center | 1988 |
Differences in magnesium and calcium effects on N-methyl-D-aspartate- and quisqualate-induced decreases in extracellular sodium concentration in rat hippocampal slices.
Topics: Action Potentials; Animals; Aspartic Acid; Calcium; Electric Stimulation; Hippocampus; In Vitro Techniques; Magnesium; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; Sodium | 1988 |
Excitatory amino acids: role in morphine excitation in rat periaqueductal gray.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Kainic Acid; Male; Morphine; Motor Activity; N-Methylaspartate; Oxadiazoles; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, GABA-A | 1988 |
The NMDA receptor: central role in pain inhibition in rat periaqueductal gray.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Analgesia; Animals; Aspartic Acid; Kainic Acid; Male; Morphine; N-Methylaspartate; Oxadiazoles; Pain; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1988 |
The involvement of excitatory amino acid receptors within the prepiriform cortex in pilocarpine-induced limbic seizures in rats.
Topics: Animals; Aspartic Acid; Cerebral Cortex; Kainic Acid; Male; N-Methylaspartate; Olfactory Bulb; Oxadiazoles; Pilocarpine; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Reference Values; Seizures | 1988 |
Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex.
Topics: Animals; Aspartic Acid; Cerebral Cortex; Corpus Callosum; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; Ketamine; Male; Muscimol; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Oxadiazoles; Potassium; Quisqualic Acid; Rats; Rats, Inbred Strains; Tetrodotoxin | 1985 |
Excitatory effects of L-glutamate and some analogs on isolated horizontal cells from the catfish retina.
Topics: Animals; Aspartic Acid; Fishes; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Retina | 1985 |
Anticonvulsant action of beta-kainic acid in mice. Is beta-kainic acid an N-methyl-D-aspartate antagonist?
Topics: Animals; Anticonvulsants; Aspartic Acid; Excitatory Amino Acid Antagonists; Glutamic Acid; Homocysteine; Kainic Acid; Mice; N-Methylaspartate; Oxadiazoles; Pyrrolidines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Seizures; Stereoisomerism | 1985 |
Effects of bath-applied excitatory amino acids and their analogs on spinal interneurons of the lamprey.
Topics: Amino Acids; Animals; Aspartic Acid; Fishes; Glutamates; Glutamic Acid; Glycine; Homocysteine; In Vitro Techniques; Interneurons; Kainic Acid; Lampreys; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Spinal Cord | 1985 |
Peptides derived from kainic acid as antagonists of N-methyl-D-aspartate-induced neuroexcitation in rat brain.
Topics: Animals; Aspartic Acid; Corpus Striatum; Excitatory Amino Acid Antagonists; Glutamic Acid; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats | 1985 |
Excitatory and inhibitory responses of Purkinje cells, in the rat cerebellum in vivo, induced by excitatory amino acids.
Topics: Amino Acids; Animals; Aspartic Acid; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, GABA-A | 1985 |
Neurochemical relation between excitatory and inhibitory amino acids in hippocampus.
Topics: Acetylcholine; Amino Acids; Animals; Aspartic Acid; Cysteine; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neurons; Neurotransmitter Agents; Oxadiazoles; Potassium; Quisqualic Acid; Rats; Rats, Inbred Strains | 1985 |
A dipeptide derived from kainic and L-glutamic acids: a selective antagonist of amino acid induced neuroexcitation with anticonvulsant properties.
Topics: Animals; Aspartic Acid; Cell Membrane Permeability; Corpus Striatum; Dipeptides; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Kainic Acid; Male; Mice; N-Methylaspartate; Oxadiazoles; Picrotoxin; Quisqualic Acid; Rats; Seizures; Sodium | 1985 |
Ketamine acts as a non-competitive N-methyl-D-aspartate antagonist on frog spinal cord in vitro.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Kainic Acid; Ketamine; Magnesium; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana pipiens; Rana temporaria; Spinal Cord; Valine | 1985 |
Action of excitatory amino acids and their antagonists on hippocampal neurons.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Aminobutyrates; Animals; Aspartic Acid; Excitatory Amino Acid Antagonists; Glutamic Acid; Guinea Pigs; Hippocampus; Iontophoresis; Manganese; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Tetrodotoxin; Valine | 1985 |
Evidence for an excitatory amino acid as the transmitter of the auditory nerve in the in vitro mouse cochlear nucleus.
Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Action Potentials; Amino Acids; Animals; Aspartic Acid; Cochlear Nerve; Dose-Response Relationship, Drug; Evoked Potentials; Female; Kainic Acid; Male; Mice; Mice, Inbred C3H; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Receptors, Neurotransmitter; Valine; Vestibulocochlear Nerve | 1985 |
Excitatory amino acid analogs evoke release of endogenous amino acids and acetyl choline from chick retina in vitro.
Topics: Acetylcholine; Amino Acids; Animals; Aspartic Acid; Calcium; Chickens; Dose-Response Relationship, Drug; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Potassium; Quisqualic Acid; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Retina; Sodium; Stimulation, Chemical | 1985 |
Induction of glutamate binding sites in hippocampal membranes by transient exposure to high concentrations of glutamate or glutamate analogs.
Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Aminobutyrates; Animals; Aspartic Acid; Binding Sites; Chlorides; Chromatography, High Pressure Liquid; Glutamates; Glutamic Acid; Hippocampus; Homocysteine; Kainic Acid; Kinetics; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Saponins; Sodium; Valine | 1986 |
Ca2+-dependent depolarization and burst firing of rat CA1 pyramidal neurones induced by N-methyl-D-aspartic acid and quinolinic acid: antagonism by 2-amino-5-phosphonovaleric and kynurenic acids.
Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Calcium; Convulsants; Electric Conductivity; Electric Stimulation; Evoked Potentials; Hippocampus; In Vitro Techniques; Kynurenic Acid; N-Methylaspartate; Neurons; Oxadiazoles; Pyramidal Tracts; Pyridines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats; Valine | 1986 |
2-Amino-5-phosphonovalerate and Co2+ selectively block depolarization and burst firing of rat hippocampal CA1 pyramidal neurones by N-methyl-D-aspartate.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Aspartic Acid; Cobalt; Evoked Potentials; Hippocampus; Iontophoresis; N-Methylaspartate; Neurons; Oxadiazoles; Pyramidal Tracts; Quisqualic Acid; Rats; Tetrodotoxin; Valine | 1986 |
Pharmacologically distinct glutamate receptors on cerebellar granule cells.
Topics: 2-Aminoadipic Acid; Animals; Aspartic Acid; Calcium; Cells, Cultured; Cerebellum; Glutamates; Glutamic Acid; Isomerism; Kainic Acid; Kinetics; Mice; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter | 1986 |
A comparative study on the elicitability of vocalization by electrical brain stimulation, glutamate, aspartate and quisqualate in the squirrel monkey.
Topics: Animals; Aspartic Acid; Brain Mapping; Electric Stimulation; Evoked Potentials; Glutamates; Glutamic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Reaction Time; Saimiri; Vocalization, Animal | 1986 |
Receptors for excitatory amino acids on neurons in rat pyriform cortex.
Topics: Animals; Aspartic Acid; Glutamates; Glutamic Acid; In Vitro Techniques; Limbic System; N-Methylaspartate; Olfactory Pathways; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, Neurotransmitter; Synaptic Transmission | 1986 |
Chemoresponsiveness of intracellular nuclei neurones to L-aspartate, L-glutamate and related derivatives in rat cerebellar slices maintained in vitro.
Topics: Animals; Aspartic Acid; Cerebellar Nuclei; Convulsants; Glutamates; Glutamic Acid; In Vitro Techniques; Injections; Magnesium; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Structure-Activity Relationship | 1986 |
Comparative actions of quisqualate and N-methyl-D-aspartate, excitatory amino acid agonists, on guinea-pig cochlear potentials.
Topics: Action Potentials; Animals; Aspartic Acid; Cochlea; Dose-Response Relationship, Drug; Evoked Potentials; Glutamates; Glutamic Acid; Guinea Pigs; Kainic Acid; Kinetics; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Vestibulocochlear Nerve | 1986 |
Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity.
Topics: Animals; Aspartic Acid; Glutamates; Glutamic Acid; Humans; Huntington Disease; Kainic Acid; Mice; N-Methylaspartate; NADH, NADPH Oxidoreductases; NADPH Dehydrogenase; Neurons; Oxadiazoles; Pyridines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid | 1986 |
Localization of [3H]glutamate binding sites in rat adrenal medulla.
Topics: Acetates; Acetic Acid; Adrenal Medulla; Animals; Aspartic Acid; Binding Sites; Binding, Competitive; Cerebral Cortex; Glutamates; Glutamic Acid; Male; N-Methylaspartate; Organ Specificity; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains | 1986 |
Blockade by D-aminophosphonovalerate or Mg2+ of excitatory amino acid-induced responses on spinal motoneurons in vitro.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Electric Conductivity; Excitatory Amino Acid Antagonists; In Vitro Techniques; Magnesium; Membrane Potentials; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana temporaria; Synaptic Transmission; Valine | 1986 |
Magnesium ions inhibit the stimulation of inositol phospholipid hydrolysis by endogenous excitatory amino acids in primary cultures of cerebellar granule cells.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cells, Cultured; Cerebellum; Drug Synergism; Glutamates; Glutamic Acid; Hydrolysis; Inositol Phosphates; Kainic Acid; Magnesium; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Sugar Phosphates; Valine; Veratridine | 1987 |
Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anterior Horn Cells; Anura; Aspartic Acid; Hydrogen-Ion Concentration; In Vitro Techniques; Kainic Acid; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Valine | 1986 |
Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Cell Membrane; Cerebral Cortex; Drug Interactions; Electrophysiology; Homocysteine; Ibotenic Acid; Kainic Acid; Magnesium; Membrane Potentials; Mice; N-Methylaspartate; Neurons; Oxadiazoles; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Zinc | 1987 |
Respiratory and vasomotor effects of excitatory amino acid on ventral medullary surface.
Topics: 2-Amino-5-phosphonovalerate; Animals; Apnea; Aspartic Acid; Blood Pressure; Carotid Sinus; Cats; Female; Glutamates; Kainic Acid; Male; Medulla Oblongata; N-Methylaspartate; Oxadiazoles; Phrenic Nerve; Quisqualic Acid; Respiration; Vagotomy; Valine; Vasomotor System | 1987 |
Postnatal development of the chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cerebellar Cortex; Glutamates; Glutamic Acid; In Vitro Techniques; N-Methylaspartate; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats; Rats, Inbred Strains; Reaction Time; Valine | 1987 |
Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Binding Sites; Cerebral Cortex; gamma-Aminobutyric Acid; Kainic Acid; Mice; N-Methylaspartate; Neurons; Oxadiazoles; Potassium; Quisqualic Acid; Valine | 1987 |
AMPA is a powerful neurotoxin in the chicken retina.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Chickens; Choline O-Acetyltransferase; Dose-Response Relationship, Drug; Ibotenic Acid; Injections; Kainic Acid; N-Methylaspartate; Nerve Degeneration; Oxadiazoles; Oxazoles; Quisqualic Acid; Retina; Retinal Ganglion Cells; Vitreous Body | 1987 |
Dual action of excitatory amino acids on the metabolism of inositol phosphates in striatal neurons.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Carbachol; Cells, Cultured; Corpus Striatum; Glutamates; Inositol Phosphates; Mice; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Sugar Phosphates; Valine | 1987 |
Hippocampal cells primed with quisqualate are depolarized by AP4 and AP6, ligands for a putative glutamate uptake site.
Topics: Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Aminocaproates; Animals; Aspartic Acid; Electric Stimulation; Glutamates; Glutamic Acid; Hippocampus; Ibotenic Acid; In Vitro Techniques; Male; Membrane Potentials; N-Methylaspartate; Norleucine; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter | 1987 |
Glutamate-induced ionic currents in cultured neurons from the rat superior colliculus.
Topics: Animals; Aspartic Acid; Calcium; Cells, Cultured; Glutamates; Glutamic Acid; Magnesium; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Superior Colliculi | 1987 |
The mouse neocortical slice: preparation and responses to excitatory amino acids.
Topics: Amino Acids; Animals; Anticonvulsants; Aspartic Acid; Bicuculline; Cerebral Cortex; Corpus Callosum; In Vitro Techniques; Kainic Acid; Male; Membrane Potentials; Mice; Mice, Inbred Strains; N-Methylaspartate; Ouabain; Oxadiazoles; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Tetrodotoxin | 1987 |
Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse.
Topics: Animals; Aspartic Acid; Autoradiography; Binding Sites; Cerebellum; Glutamates; Glutamic Acid; Kainic Acid; Mice; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface | 1987 |
Peripheral type benzodiazepine binding sites are a sensitive indirect index of neuronal damage.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Binding Sites; Choline O-Acetyltransferase; Corpus Striatum; Glutamate Decarboxylase; Ibotenic Acid; Kainic Acid; Male; N-Methylaspartate; Nerve Degeneration; Neurotoxins; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, GABA-A | 1987 |
Lesions of putative glutamatergic pathways potentiate the increase of inositol phospholipid hydrolysis elicited by excitatory amino acids.
Topics: Amino Acids; Aminobutyrates; Animals; Aspartic Acid; Colchicine; Corpus Striatum; Glutamates; Glutamic Acid; Hippocampus; Hydrolysis; Ibotenic Acid; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Phosphatidylinositols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1987 |
Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Cerebral Cortex; Glutamates; Glutamic Acid; Isomerism; Kainic Acid; Mice; N-Methylaspartate; Neurons; Neurotoxins; Oxadiazoles; Quisqualic Acid; Valine | 1988 |
Differential effects of serotonin on the spontaneous discharge and on the excitatory amino acid-induced responses of deep cerebellar nuclei neurons in rat cerebellar slices.
Topics: Action Potentials; Amino Acids; Animals; Aspartic Acid; Calcium; Cerebellar Nuclei; Drug Interactions; Glutamates; Glutamic Acid; In Vitro Techniques; N-Methylaspartate; Oxadiazoles; Potassium; Quisqualic Acid; Rats; Rats, Inbred Strains; Serotonin | 1987 |
Rapid desensitization of glutamate receptors in vertebrate central neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Cells, Cultured; Chick Embryo; Electric Conductivity; Hippocampus; Ibotenic Acid; In Vitro Techniques; Iontophoresis; Kynurenic Acid; N-Methylaspartate; Oxadiazoles; Pressure; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord; Time Factors | 1988 |
Excitatory amino acid-evoked membrane currents and excitatory synaptic transmission in lamprey reticulospinal neurons.
Topics: Amino Acids; Animals; Aspartic Acid; Brain Stem; Electric Stimulation; Evoked Potentials; Glutamates; Glutamic Acid; Kainic Acid; Kynurenic Acid; Lampreys; N-Methylaspartate; Neurons; Neurotransmitter Agents; Oxadiazoles; Quisqualic Acid; Spinal Cord; Synapses; Synaptic Transmission | 1988 |
The modulation of excitatory amino acid responses by serotonin in the cat neocortex in vitro.
Topics: Animals; Aspartic Acid; Cats; Cerebral Cortex; Cinanserin; Electric Stimulation; Evoked Potentials; Female; Glutamates; Glutamic Acid; In Vitro Techniques; Magnesium; Male; Membrane Potentials; Methysergide; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Serotonin; Tetraethylammonium Compounds; Tetrodotoxin | 1987 |
Rapid desensitization of glutamate receptors in vertebrate central neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Cells, Cultured; Chick Embryo; Electric Conductivity; Hippocampus; Ibotenic Acid; In Vitro Techniques; Iontophoresis; Kynurenic Acid; N-Methylaspartate; Oxadiazoles; Pressure; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord; Time Factors | 1988 |
A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aminobutyrates; Animals; Aspartic Acid; Cerebral Cortex; Evoked Potentials; In Vitro Techniques; N-Methylaspartate; Oxadiazoles; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter | 1988 |
Differential control by N-methyl-D-aspartate and kainate of striatal dopamine release in vivo: a trans-striatal dialysis study.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Atropine; Carbachol; Corpus Striatum; Dopamine; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Tetrodotoxin; Valine | 1988 |
L-glutamate-induced depolarization in solitary photoreceptors: a process that may contribute to the interaction between photoreceptors in situ.
Topics: Animals; Aspartic Acid; Axons; Dose-Response Relationship, Drug; Electric Conductivity; Glutamates; Glutamic Acid; Kainic Acid; Kynurenic Acid; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Photoreceptor Cells; Quisqualic Acid; Sodium; Turtles | 1988 |
Effects of excitatory amino acids on the oxygen consumption of hippocampal slices from the guinea pig.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Aspartic Acid; Glutamates; Guinea Pigs; Hippocampus; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Oxadiazoles; Oxygen Consumption; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spider Venoms; Valine | 1988 |
Phorbol esters attenuate glutamate-stimulated inositol phospholipid hydrolysis in neuronal cultures.
Topics: Animals; Aspartic Acid; Carbachol; Cerebellum; Diglycerides; Glutamates; Glutamic Acid; Hydrolysis; Inositol Phosphates; N-Methylaspartate; Neurons; Oxadiazoles; Phorbol 12,13-Dibutyrate; Phorbol Esters; Phosphatidylinositols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; Sphingosine; Tetradecanoylphorbol Acetate | 1988 |
Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Chlorides; Female; Ibotenic Acid; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oocytes; Oxadiazoles; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Drug; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Valine; Xenopus | 1988 |
An intracellular analysis of amino acid induced excitations of deep dorsal horn neurones in the rat spinal cord slice.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Electrophysiology; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; In Vitro Techniques; Intracellular Membranes; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Spinal Cord; Tetrodotoxin; Valine | 1988 |
Glutamate stimulates somatostatin release from diencephalic neurons in primary culture.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cells, Cultured; Diencephalon; Glutamates; Glutamic Acid; Kainic Acid; Magnesium; N-Methylaspartate; Neurons; Oxadiazoles; Phencyclidine; Potassium; Quisqualic Acid; Rats; Somatostatin; Tetrodotoxin; Valine; Veratridine | 1988 |
Role of quisqualic acid receptors in the hypermotility response produced by the injection of AMPA into the nucleus accumbens.
Topics: 2-Aminoadipic Acid; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Glutamates; Glutamine; Ibotenic Acid; Injections; Kainic Acid; Locomotion; Male; N-Methylaspartate; Nucleus Accumbens; Oxadiazoles; Oxazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Drug | 1988 |
Behavioral classification of excitatory amino acid receptors in mouse spinal cord.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Behavior, Animal; Glutamates; Glutamic Acid; Glutamine; Kainic Acid; Male; Mice; Mice, Inbred ICR; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord; Valine | 1988 |
Blockade of excitatory synaptic transmission by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the hippocampus in vitro.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Aspartic Acid; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Male; N-Methylaspartate; Neural Inhibition; Oxadiazoles; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Synaptic Transmission | 1988 |
Epinephrine and norepinephrine modulate neuronal responses to excitatory amino acids and agonists in frog spinal cord.
Topics: Amino Acids; Animals; Aspartic Acid; Epinephrine; Glutamates; Glutamic Acid; In Vitro Techniques; Isoproterenol; Kainic Acid; Membrane Potentials; Motor Neurons; N-Methylaspartate; Norepinephrine; Oxadiazoles; Quisqualic Acid; Rana pipiens; Reference Values; Spinal Cord; Yohimbine | 1987 |
Properties of two classes of rat brain acidic amino acid receptors induced by distinct mRNA populations in Xenopus oocytes.
Topics: Amino Acids; Animals; Aspartic Acid; Glutamates; Glutamic Acid; Glycine; Kainic Acid; N-Methylaspartate; Oocytes; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface; RNA, Messenger; Xenopus laevis | 1988 |
Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Animals; Aspartic Acid; Cerebellum; Electric Stimulation; In Vitro Techniques; Kainic Acid; Magnesium; N-Methylaspartate; Neural Inhibition; Oxadiazoles; Quisqualic Acid; Turtles; Valine | 1988 |
Glutamate receptors and phosphoinositide metabolism: stimulation via quisqualate receptors is inhibited by N-methyl-D-aspartate receptor activation.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Chlorides; Glutamates; Hippocampus; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Lithium; Lithium Chloride; N-Methylaspartate; Oxadiazoles; Phosphatidylinositols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Tetrodotoxin | 1988 |
Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter.
Topics: Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Glutamates; Ibotenic Acid; Kainic Acid; Kynurenic Acid; Light; Membrane Potentials; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Quisqualic Acid; Rabbits; Receptors, Glutamate; Receptors, Neurotransmitter; Retina; Retinal Ganglion Cells | 1988 |
Acute tachycardia and pressor effects following injections of kainic acid into the antero-dorsal medial hypothalamus.
Topics: Animals; Aspartic Acid; Blood Pressure; Heart Rate; Hypothalamus; Injections; Injections, Intraventricular; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats; Rats, Inbred Strains | 1987 |
Interactions between topically applied excitatory amino acids on rat cerebral cortex: discrimination by pentobarbitone.
Topics: Administration, Topical; Animals; Aspartic Acid; Cerebral Cortex; Evoked Potentials, Somatosensory; Male; N-Methylaspartate; Oxadiazoles; Pentobarbital; Pyridines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats; Rats, Inbred Strains | 1987 |
The action of quinolinate in the rat spinal cord in vitro.
Topics: Animals; Anticonvulsants; Aspartic Acid; Convulsants; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Pyridines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats; Rats, Inbred Strains; Spinal Cord | 1987 |
Autoradiographic characterization of N-methyl-D-aspartate-, quisqualate- and kainate-sensitive glutamate binding sites.
Topics: Animals; Aspartic Acid; Autoradiography; Brain; Brain Mapping; Calcium; Cerebellum; Chlorides; Glutamates; Hippocampus; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Drug; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, Neurotransmitter | 1985 |
Excitatory amino acid pharmacology of the auditory nerve and nucleus magnocellularis of the chicken.
Topics: Amino Acids; Animals; Aspartic Acid; Auditory Pathways; Baclofen; Brain Stem; Chick Embryo; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Neurotransmitter; Vestibulocochlear Nerve | 1985 |
Novel kainic acid analogues. Effects on cyclic GMP content of adult rat cerebellar slices.
Topics: Animals; Aspartic Acid; Calcium; Cerebellum; Cyclic GMP; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Neurotransmitter; Structure-Activity Relationship | 1986 |
In vitro neurotoxicity of excitatory acid analogues during cerebellar development.
Topics: Aging; Animals; Aspartic Acid; Cerebellum; Female; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neurotoxins; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Tetrodotoxin | 1986 |
Is Metaphit a phencyclidine antagonist? Studies with ketamine, phencyclidine and N-methylaspartate.
Topics: Action Potentials; Animals; Aspartic Acid; Depression, Chemical; Drug Interactions; Kainic Acid; Ketamine; N-Methylaspartate; Neurons; Oxadiazoles; Phencyclidine; Quisqualic Acid; Rats; Receptors, Opioid; Receptors, sigma; Spinal Cord | 1986 |
An animal model for neuron-specific spinal cord lesions by the microinjection of N-methylaspartate, kainic acid, and quisqualic acid.
Topics: Animals; Aspartic Acid; Disease Models, Animal; Forelimb; Ganglia, Spinal; Hindlimb; Kainic Acid; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Spinal Cord; Synaptic Transmission | 1985 |
Excitatory amino acid antagonists as novel anticonvulsants.
Topics: Amino Acids, Dicarboxylic; Animals; Anticonvulsants; Aspartic Acid; Epilepsy; Glutamates; Kainic Acid; N-Methylaspartate; Nerve Degeneration; Nervous System Diseases; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Structure-Activity Relationship | 1986 |
Muscle relaxant and anticonvulsant activity of 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, a novel N-methyl-D-aspartate antagonist, in rodents.
Topics: Animals; Anticonvulsants; Aspartic Acid; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Kainic Acid; Mice; Muscle Relaxants, Central; N-Methylaspartate; Oxadiazoles; Piperazines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Reflex; Time Factors | 1987 |
After-hyperpolarizations produced in frog motoneurons by excitatory amino acid analogues.
Topics: 2,4-Dinitrophenol; Animals; Aspartic Acid; Dinitrophenols; Kainic Acid; Membrane Potentials; Motor Neurons; N-Methylaspartate; Ouabain; Oxadiazoles; Potassium; Quisqualic Acid; Ranidae; Sodium; Synaptic Transmission | 1987 |
A comparison of excitatory amino acid antagonists acting at primary afferent C fibres and motoneurones of the isolated spinal cord of the rat.
Topics: Amino Acids; Animals; Aspartic Acid; In Vitro Techniques; Kainic Acid; Motor Neurons; N-Methylaspartate; Nerve Fibers; Neurons, Afferent; Oxadiazoles; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Spinal Cord | 1987 |
High concentrations of naloxone attenuate N-methyl-D-aspartate receptor-mediated neurotoxicity.
Topics: Animals; Aspartic Acid; Cells, Cultured; Cerebral Cortex; Female; L-Lactate Dehydrogenase; Mice; N-Methylaspartate; Naloxone; Nervous System Diseases; Oxadiazoles; Pregnancy; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1987 |
Excitatory amino acid neurotoxicity in the hippocampal slice preparation.
Topics: Amino Acids; Animals; Aspartic Acid; Dose-Response Relationship, Drug; Hippocampus; Ibotenic Acid; Kainic Acid; Male; Microscopy, Electron; N-Methylaspartate; Neurotoxins; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains | 1988 |
Excitatory amino acids and rod photoreceptor disc shedding: analysis using specific agonists.
Topics: Amino Acids; Animals; Aspartic Acid; Dose-Response Relationship, Drug; In Vitro Techniques; Kainic Acid; Light; N-Methylaspartate; Oxadiazoles; Phagosomes; Photoreceptor Cells; Pigment Epithelium of Eye; Quisqualic Acid; Rana pipiens; Xenopus laevis | 1988 |
Piriform cortex brain slices: techniques for isolation of synaptic inputs.
Topics: Aminobutyrates; Animals; Aspartic Acid; Cerebral Cortex; Dendrites; Electrophysiology; Evoked Potentials; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Synapses | 1988 |
A voltage clamp study of the glutamate responsive neuromuscular junction in Drosophila melanogaster.
Topics: Action Potentials; Alcohols; Amino Acids; Animals; Aspartic Acid; Drosophila melanogaster; Electrodes; Glutamates; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neuromuscular Junction; Oxadiazoles; Quisqualic Acid | 1988 |
Developmental changes in neuronal sensitivity to excitatory amino acids in area CA1 of the rat hippocampus.
Topics: Action Potentials; Aging; Animals; Aspartic Acid; Electric Stimulation; Hippocampus; In Vitro Techniques; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains | 1988 |
Some properties of membrane current fluctuations induced by kainate, quisqualate, and NMDA in cultured septal neurons of rat.
Topics: Animals; Aspartic Acid; Brain; Cells, Cultured; Convulsants; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats | 1988 |
Behavioural, biochemical and histochemical effects of different neurotoxic amino acids injected into nucleus basalis magnocellularis of rats.
Topics: Acetylcholinesterase; Amino Acids; Animals; Aspartic Acid; Basal Ganglia; Behavior, Animal; Cerebral Cortex; Choline O-Acetyltransferase; Cholinergic Fibers; Female; Ibotenic Acid; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Substantia Innominata | 1987 |
Responses of pyriform cortex neurons to excitatory amino acids: voltage dependence, conductance changes, and effects of divalent cations.
Topics: Animals; Aspartic Acid; Brain; Cations, Divalent; Convulsants; Electric Stimulation; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neurons; Oxadiazoles; Pyramidal Tracts; Quisqualic Acid; Rats | 1987 |
Folic acid protects chick retinal neurons against the neurotoxic action of excitatory amino acids.
Topics: Animals; Aspartic Acid; Chickens; Dose-Response Relationship, Drug; Folic Acid; Kainic Acid; Microscopy, Electron; N-Methylaspartate; Neurons; Oxadiazoles; Quinolinic Acids; Quisqualic Acid; Retina | 1987 |
Effects of L-cysteine-sulphinate and L-aspartate, mixed excitatory amino acid agonists, on the membrane potential of cat caudate neurons.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Aspartic Acid; Cats; Caudate Nucleus; Cysteine; Female; Kainic Acid; Male; Membrane Potentials; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Quisqualic Acid | 1987 |
Non-pharmacological effects of the use of microelectrophoresis and pressure ejection of drugs in combination.
Topics: Amino Acids; Animals; Aspartic Acid; Electrophoresis; Ibotenic Acid; Kainic Acid; Microelectrodes; N-Methylaspartate; Neurons; Nifedipine; Oxadiazoles; Quisqualic Acid; Rats; Spinal Cord | 1987 |
Selective loss of Purkinje and granule cell responsiveness to N-methyl-D-aspartate in rat cerebellum during development.
Topics: Aging; Animals; Aspartic Acid; Cerebellum; Convulsants; In Vitro Techniques; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurons; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats | 1987 |
The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro.
Topics: Amino Acids; Animals; Aspartic Acid; Calcium; Cells, Cultured; Corpus Striatum; Glutamates; In Vitro Techniques; Kainic Acid; Magnesium; Mice; N-Methylaspartate; Neurons; Oxadiazoles; Permeability; Quisqualic Acid | 1987 |
2-Methyl-3,3-diphenyl-3-propanolamine (2-MDP) selectively antagonises N-methyl-aspartate (NMA).
Topics: Anesthetics; Anesthetics, Dissociative; Animals; Anura; Aspartic Acid; In Vitro Techniques; Kainic Acid; Ketamine; Medulla Oblongata; N-Methylaspartate; Neurons; Oxadiazoles; Phenylpropanolamine; Quisqualic Acid; Rats; Spinal Cord | 1986 |
The primary afferent depolarizing action of kainate in the rat.
Topics: Action Potentials; Afferent Pathways; Animals; Aspartic Acid; Capsaicin; Evoked Potentials; gamma-Aminobutyric Acid; Glutamates; In Vitro Techniques; Kainic Acid; Membrane Potentials; N-Methylaspartate; Nerve Fibers; Oxadiazoles; Quisqualic Acid; Rats; Spinal Nerve Roots | 1986 |
Amino acid neurotoxicity: relationship to neuronal depolarization in rat cerebellar slices.
Topics: Age Factors; Animals; Aspartic Acid; Cerebellar Diseases; Female; In Vitro Techniques; Kainic Acid; Male; Membrane Potentials; N-Methylaspartate; Ouabain; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats; Rats, Inbred Strains; Veratridine | 1986 |
O-phosphohomoserine, a naturally occurring analogue of phosphonate amino acid antagonists, is an N-methyl-D-aspartate (NMDA) antagonist in rat hippocampus.
Topics: Animals; Aspartic Acid; Drug Interactions; Evoked Potentials; Hippocampus; Homoserine; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats | 1986 |
Laminar profiles of the changes in extracellular calcium concentration induced by repetitive stimulation and excitatory amino acids in the rat dentate gyrus.
Topics: Amino Acids; Animals; Aspartic Acid; Calcium; Electric Stimulation; Hippocampus; Iontophoresis; Male; Membrane Potentials; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains | 1986 |
Effects of GABA and bicuculline on N-methyl-D-aspartate- and quisqualate-induced reductions in extracellular free calcium in area CA1 of the hippocampal slice.
Topics: Animals; Aspartic Acid; Bicuculline; Calcium; Drug Interactions; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains | 1986 |
Long-term alterations in amino acid-induced ionic conductances in chronic epilepsy.
Topics: Amino Acids; Animals; Aspartic Acid; Calcium; Cobalt; Electric Conductivity; Epilepsy; Glutamates; Kainic Acid; Motor Cortex; N-Methylaspartate; Oxadiazoles; Pyramidal Tracts; Quisqualic Acid; Rats; Sodium | 1986 |
Excitatory amino acids and epilepsy-induced changes in extracellular space size.
Topics: Animals; Aspartic Acid; Cats; Epilepsy; Extracellular Space; Hippocampus; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neuroglia; Oxadiazoles; Potassium; Quisqualic Acid; Somatosensory Cortex; Water-Electrolyte Balance | 1986 |
N-acetyl-aspartylglutamate: binding sites and excitatory action in the dorsolateral septum of rats.
Topics: Action Potentials; Animals; Aspartic Acid; Autoradiography; Binding Sites; Dipeptides; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Septal Nuclei | 1987 |
Dopamine inhibits calcium-independent gamma-[3H]aminobutyric acid release induced by kainate and high K+ in the fish retina.
Topics: Animals; Aspartic Acid; Bicuculline; Calcium; Dopamine; Fishes; gamma-Aminobutyric Acid; Haloperidol; Kainic Acid; N-Methylaspartate; Oxadiazoles; Picrotoxin; Potassium; Pyrrolidines; Quisqualic Acid; Retina; Serotonin | 1985 |
Anticonvulsant activity of two novel piperazine derivatives with potent kainate antagonist activity.
Topics: Acoustic Stimulation; Animals; Anticonvulsants; Aspartic Acid; Chemical Phenomena; Chemistry; Glutamates; Kainic Acid; Mice; Mice, Inbred DBA; Mice, Inbred Strains; N-Methylaspartate; Oxadiazoles; Piperazines; Pyrrolidines; Quinolinic Acids; Quisqualic Acid; Seizures | 1985 |
An intracellular study of the interactions of N-methyl-DL-aspartate with ketamine in the mouse hippocampal slice.
Topics: Action Potentials; Animals; Aspartic Acid; Drug Interactions; Hippocampus; In Vitro Techniques; Kainic Acid; Ketamine; Membrane Potentials; Mice; Mice, Inbred C57BL; N-Methylaspartate; Oxadiazoles; Quisqualic Acid | 1985 |
Neurotoxic amino acid lesions of the lateral hypothalamus: a parametric comparison of the effects of ibotenate, N-methyl-D,L-aspartate and quisqualate in the rat.
Topics: Animals; Aspartic Acid; Dopamine; Hypothalamic Area, Lateral; Ibotenic Acid; Male; Mesencephalon; N-Methylaspartate; Neural Pathways; Oxadiazoles; Oxazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Serotonin | 1985 |
Comparison of sigma- and kappa-opiate receptor ligands as excitatory amino acid antagonists.
Topics: Acetylcholine; Amino Acids; Animals; Aspartic Acid; Cats; Cyclazocine; Ethylketocyclazocine; Kainic Acid; Ketamine; Ligands; Microelectrodes; N-Methylaspartate; Neurons; Oxadiazoles; Phenazocine; Quisqualic Acid; Rats; Receptors, Opioid; Receptors, Opioid, kappa; Receptors, sigma; Stereoisomerism | 1984 |
Pharmacological antagonists of excitant amino acid action.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Aspartic Acid; Kainic Acid; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Quisqualic Acid; Receptors, Drug; Structure-Activity Relationship | 1981 |
Effect of urethane on synaptic and amino acid-induced excitation in isolated spinal cord preparations.
Topics: Animals; Aspartic Acid; Evoked Potentials; Ganglia, Spinal; Glutamates; Glutamic Acid; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Quisqualic Acid; Ranidae; Rats; Spinal Cord; Synapses; Urethane | 1982 |
The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro.
Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; Action Potentials; Amino Acids; Animals; Aspartic Acid; Dipeptides; Hippocampus; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Valine | 1983 |
Blockade of amino acid-induced depolarizations and inhibition of excitatory post-synaptic potentials in rat dentate gyrus.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Dipeptides; Evoked Potentials; Hippocampus; In Vitro Techniques; Kainic Acid; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Rats; Synapses; Valine | 1983 |
Effects of excitatory amino acids on locomotor activity after bilateral microinjection into the rat nucleus accumbens: possible dependence on dopaminergic mechanisms.
Topics: Amino Acids; Animals; Aspartic Acid; Dose-Response Relationship, Drug; Glutamates; Glutamic Acid; Kainic Acid; Male; Motor Activity; N-Methylaspartate; Nucleus Accumbens; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Dopamine; Reserpine; Seizures; Septal Nuclei; Synaptic Transmission | 1983 |
Effects of excitatory amino acids on dopamine synthesis in the rat retina.
Topics: Amino Acids; Animals; Aspartic Acid; Dopamine; Glutamates; Glutamic Acid; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Retina | 1983 |
Voltage clamp analysis of the effect of excitatory amino acids and derivatives on Purkinje cell dendrites in rat cerebellar slices maintained in vitro.
Topics: Amino Acids; Animals; Aspartic Acid; Culture Techniques; Dendrites; Glutamates; Glutamic Acid; N-Methylaspartate; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Cell Surface; Synaptic Transmission | 1983 |
Effects of kainic and other amino acids on synaptic excitation in rat hippocampal slices: 1. Extracellular analysis.
Topics: Amino Acids; Animals; Aspartate Aminotransferases; Aspartic Acid; Evoked Potentials; Folic Acid; Glutamates; Glutamic Acid; Hippocampus; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Neural Pathways; Oxadiazoles; Pyrrolidines; Quisqualic Acid; Rats | 1983 |
Amino acid neurotransmission between fimbria-fornix fibers and neurons in the lateral septum of the rat: a microiontophoretic study.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Excitatory Amino Acid Antagonists; Glutamates; Hippocampus; Iontophoresis; Male; N-Methylaspartate; Nerve Fibers; Neural Pathways; Neuromuscular Junction; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Septal Nuclei; Synaptic Transmission; Valine | 1984 |
On the sensitivity of H1 horizontal cells of the carp retina to glutamate, aspartate and their agonists.
Topics: Animals; Aspartic Acid; Carps; Glutamates; Glutamic Acid; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Oxadiazoles; Quisqualic Acid; Retina | 1984 |
l-Glutamate reduces the affinity of [3H]N-propylnorapomorphine binding sites in striatal membranes.
Topics: Animals; Antiparkinson Agents; Apomorphine; Aspartic Acid; Binding Sites; Cell Membrane; Corpus Striatum; Glutamates; Glutamic Acid; Male; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Spiperone | 1984 |
A comparison of the effects of N-methyl-D-aspartate and quinolinate on central neurones of the rat.
Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Iontophoresis; Microinjections; N-Methylaspartate; Neurons; Oxadiazoles; Pyridines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats; Somatosensory Cortex; Spinal Cord; Stimulation, Chemical; Valine | 1984 |
Effect of excitatory amino acids on Purkinje cell dendrites in cerebellar slices from normal and staggerer mice.
Topics: Amino Acids; Animals; Aspartic Acid; Crosses, Genetic; Dendrites; Glutamates; Glutamic Acid; In Vitro Techniques; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Mice, Neurologic Mutants; N-Methylaspartate; Oxadiazoles; Purkinje Cells; Quisqualic Acid | 1984 |
The effect of the dioxolanes on amino acid induced excitation in the mammalian spinal cord.
Topics: Animals; Aspartic Acid; Cats; Dioxolanes; Dioxoles; Kainic Acid; Ketamine; N-Methylaspartate; Oxadiazoles; Phencyclidine; Quisqualic Acid; Rats; Species Specificity; Spinal Cord; Stereoisomerism; Structure-Activity Relationship | 1984 |
Mixed-agonist action of excitatory amino acids on mouse spinal cord neurones under voltage clamp.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Culture Techniques; Electric Conductivity; Glutamates; Glutamic Acid; Homocysteine; Kainic Acid; Membrane Potentials; Mice; Mice, Inbred C57BL; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Spinal Cord; Valine | 1984 |
The effect of D-alpha-aminoadipate on excitatory amino acid responses recorded intracellularly from motoneurones of the frog spinal cord.
Topics: 2-Aminoadipic Acid; Amino Acids; Amino Acids, Dicarboxylic; Animals; Anterior Horn Cells; Aspartic Acid; Evoked Potentials; Excitatory Amino Acid Antagonists; Glutamic Acid; In Vitro Techniques; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana temporaria; Spinal Nerve Roots | 1984 |
Selective association of N-methyl aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities.
Topics: Amino Acids; Animals; Aspartic Acid; Brain; Chlorides; Glutamates; Glutamic Acid; Kinetics; Male; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Neurotransmitter; Synapses; Synaptic Membranes | 1984 |
Arginine-vasopressin enhances the responses of lateral septal neurons in the rat to excitatory amino acids and fimbria-fornix stimuli.
Topics: Amino Acids; Animals; Arginine Vasopressin; Aspartic Acid; Brain; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Male; Muscimol; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Synapses | 1984 |
An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid.
Topics: Acetylcholine; Animals; Aspartic Acid; Cerebral Cortex; Convulsants; Drug Interactions; Kynurenic Acid; Kynurenine; Male; N-Methylaspartate; Neuromuscular Depolarizing Agents; Niacinamide; Oxadiazoles; Pyridines; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats | 1982 |
Actions of excitatory amino acids and kynurenic acid in the primate hippocampus: a preliminary study.
Topics: Amino Acids; Animals; Aspartic Acid; Callitrichinae; Hippocampus; In Vitro Techniques; Kynurenic Acid; N-Methylaspartate; Oxadiazoles; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid | 1984 |
Quisqualic acid excitation of cortical neurones is selectively antagonized by streptomycin.
Topics: Animals; Aspartic Acid; Cerebral Cortex; Evoked Potentials; Kainic Acid; Male; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Streptomycin; Synaptic Transmission | 1983 |
Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system.
Topics: Animals; Aspartic Acid; Central Nervous System; Evoked Potentials; Glutamates; Male; N-Methylaspartate; Oxadiazoles; Pyridines; Pyrrolidinones; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1983 |
Effects of excitatory amino acids and their antagonists on membrane and action potentials of cat caudate neurones.
Topics: 2-Aminoadipic Acid; Action Potentials; Amino Acids; Animals; Aspartic Acid; Cats; Caudate Nucleus; Female; Glutamates; Male; Membrane Potentials; N-Methylaspartate; Oxadiazoles; Pipecolic Acids; Quinolinic Acid; Quinolinic Acids; Quisqualic Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate | 1983 |
Excitatory amino acid receptors in Xenopus embryo spinal cord and their role in the activation of swimming.
Topics: Animals; Aspartic Acid; Kainic Acid; Manganese; Membrane Potentials; Motor Activity; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord; Swimming; Xenopus | 1984 |
Antagonism of the hypermotility response induced by excitatory amino acids in the rat nucleus accumbens.
Topics: 2-Aminoadipic Acid; Amino Acids; Animals; Aspartic Acid; Diaminopimelic Acid; Glutamates; Injections; Kainic Acid; Male; Motor Activity; N-Methylaspartate; Nucleus Accumbens; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Septal Nuclei | 1984 |
Magnesium selectively inhibits N-methyl-aspartic acid-induced hypermotility after intra-accumbens injection.
Topics: Animals; Aspartic Acid; Calcium Chloride; Injections; Kainic Acid; Magnesium; Male; Motor Activity; N-Methylaspartate; Nucleus Accumbens; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains | 1984 |
Differential sensitivity of rat cerebellar cells in vitro to the neurotoxic effects of excitatory amino acid analogues.
Topics: Amino Acids; Animals; Aspartic Acid; Cerebellum; In Vitro Techniques; Interneurons; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurotoxins; Oxadiazoles; Quisqualic Acid; Rats | 1984 |
Mg2+ dependence of membrane resistance increases evoked by NMDA in hippocampal neurones.
Topics: Animals; Aspartic Acid; Cell Membrane; Evoked Potentials; Hippocampus; In Vitro Techniques; Magnesium; Membrane Potentials; N-Methylaspartate; Neuromuscular Depolarizing Agents; Neurons; Oxadiazoles; Pyramidal Tracts; Quisqualic Acid; Rats | 1984 |
Structure-activity relations of dipeptide antagonists of excitatory amino acids.
Topics: Amino Acids; Animals; Aspartic Acid; Chemical Phenomena; Chemistry; Dipeptides; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Rana pipiens; Rana temporaria; Spinal Cord; Structure-Activity Relationship | 1984 |
Actions of TRH and cyclo-(His-Pro) on spontaneous and evoked activity of cortical neurones.
Topics: Acetylcholine; Animals; Aspartic Acid; Cerebral Cortex; Male; N-Methylaspartate; Neurons; Oxadiazoles; Peptides, Cyclic; Piperazines; Quisqualic Acid; Rats; Thyrotropin-Releasing Hormone | 1983 |
Effect of glutamate, aspartate and related derivatives on cerebellar purkinje cell dendrites in the rat: an in vitro study.
Topics: 2-Aminoadipic Acid; Action Potentials; Animals; Aspartic Acid; Dendrites; Glutamates; In Vitro Techniques; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Purkinje Cells; Quisqualic Acid; Rats; Rats, Inbred Strains | 1982 |
Antagonism of excitatory amino acid-induced and synaptic excitation of spinal neurones by cis-2,3-piperidine dicarboxylate.
Topics: Alanine; Amino Acids; Animals; Aspartic Acid; Cats; Excitatory Amino Acid Antagonists; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neurons; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Rana temporaria; Rats; Spinal Cord; Synapses | 1981 |
Methyltetrahydrofolate as an antagonist of excitatory amino acids on spinal neurones.
Topics: Amino Acids; Animals; Aspartic Acid; Folic Acid; Kainic Acid; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Rats; Spinal Cord; Tetrahydrofolates | 1982 |
Functional kainate-selective glutamate receptors in cultured hippocampal neurons.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cell Membrane Permeability; Cells, Cultured; Embryo, Mammalian; Hippocampus; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurons; Neurotoxins; Quinoxalines; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Glutamate | 1993 |
Brief calcium transients evoked by glutamate receptor agonists in rat dorsal horn neurons: fast kinetics and mechanisms.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Calcium Channels; Cells, Cultured; Cycloleucine; Female; Glutamates; Glutamic Acid; Ion Channel Gating; Kainic Acid; Kinetics; Lanthanum; N-Methylaspartate; Neurons; Neurotoxins; Photometry; Potassium; Pregnancy; Presynaptic Terminals; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Spinal Cord | 1993 |
Induction of cerebellar long-term depression in culture requires postsynaptic action of sodium ions.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cells, Cultured; Cerebellum; Cycloleucine; Electrophysiology; Embryo, Mammalian; Evoked Potentials; Mice; N-Methylaspartate; Neuronal Plasticity; Neurons; Neurotoxins; Picrotoxin; Quisqualic Acid; Receptors, AMPA; Sodium; Synapses; Tetrodotoxin; Veratridine | 1993 |
Glutamate-evoked release of arachidonic acid from mouse brain astrocytes.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Arachidonic Acid; Astrocytes; Brain; Cells, Cultured; Cerebellum; Cerebral Cortex; Corpus Striatum; Cycloleucine; Glutamates; Glutamic Acid; Hippocampus; Ibotenic Acid; Inositol Phosphates; Kainic Acid; Kinetics; Mice; N-Methylaspartate; Neurotoxins; Organ Specificity; Quisqualic Acid; Receptors, Glutamate; Time Factors; Tritium | 1994 |
Differential effects of NBQX on the distal and local toxicity of glutamate agonists administered intra-hippocampally.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cell Death; Diazepam; Hippocampus; Injections; Kainic Acid; Limbic System; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Glutamate | 1993 |
Metabotropic and ionotropic excitatory amino acid receptor agonists induce different behavioral effects in mice.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Behavior, Animal; Cycloleucine; Dizocilpine Maleate; Dose-Response Relationship, Drug; Ibotenic Acid; Kainic Acid; Male; Mice; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Seizures | 1993 |
Tachykinin induced regulation of excitatory amino acid responses in the rat spinal cord in vitro.
Topics: Alkaloids; Animals; Animals, Newborn; Bradykinin; Cyclic AMP-Dependent Protein Kinases; Drug Interactions; In Vitro Techniques; Kinetics; N-Methylaspartate; Neurokinin A; Protease Inhibitors; Protein Kinase C; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Receptors, Neurokinin-1; Spinal Cord; Staurosporine; Substance P; Time Factors | 1994 |
Glutamate receptor-driven activation of transcription factors in primary neuronal cultures.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Animals, Newborn; Astrocytes; Base Sequence; Binding Sites; Cell Nucleus; Cell Survival; Cells, Cultured; Cycloleucine; Embryo, Mammalian; Gene Expression; Glutamates; Glutamic Acid; Kainic Acid; Kinetics; Mice; Molecular Sequence Data; N-Methylaspartate; Neurons; Proto-Oncogene Proteins; Proto-Oncogenes; Quisqualic Acid; Rats; Receptors, Glutamate; Transcription Factors | 1994 |
Complex correlation between excitatory amino acid-induced increase in the intracellular Ca2+ concentration and subsequent loss of neuronal function in individual neocortical neurons in culture.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cell Membrane; Cells, Cultured; Cerebral Cortex; Excitatory Amino Acids; Fetus; Glutamic Acid; Membrane Potentials; Mice; N-Methylaspartate; Neurons; Potassium Chloride; Quisqualic Acid | 1994 |
Ethanol inhibits glutamatergic neurotransmission in nucleus accumbens neurons by multiple mechanisms.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Ethanol; Excitatory Amino Acid Antagonists; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Naloxone; Nucleus Accumbens; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Synaptic Transmission | 1994 |
Excitotoxicity of glutamate and four analogs in primary spinal cord cell cultures.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Acridine Orange; Animals; Cell Death; Cells, Cultured; Dizocilpine Maleate; Ethidium; Glutamic Acid; Kainic Acid; L-Lactate Dehydrogenase; Mice; N-Methylaspartate; Quisqualic Acid; Spinal Cord; Staining and Labeling | 1994 |
Early in vitro development of voltage- and transmitter-gated currents in GABAergic amacrine cells.
Topics: Animals; Autoradiography; Cells, Cultured; Cellular Senescence; Chick Embryo; Electric Stimulation; Evoked Potentials; gamma-Aminobutyric Acid; Glutamic Acid; Glycine; Interneurons; Ion Channel Gating; Ion Channels; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurons; Quisqualic Acid; Receptors, GABA; Receptors, Glutamate; Retina; Time Factors; Tritium | 1994 |
Inhibitory effects of salmon calcitonin on the tail-biting and scratching behavior induced by substance P and three excitatory amino acids.
Topics: Afferent Pathways; Animals; Calcitonin; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Injections, Intraventricular; Injections, Spinal; Kainic Acid; Male; Mice; N-Methylaspartate; Pain; Pain Measurement; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurokinin-1; Spinal Cord; Substance P; Tail | 1994 |
Glycine release from hippocampal slices in developing and ageing mice: modulation by glutamatergic receptors.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aging; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Dizocilpine Maleate; Female; Glycine; Hippocampus; In Vitro Techniques; Kainic Acid; Male; Mice; N-Methylaspartate; Potassium; Quisqualic Acid; Receptors, Glutamate; Tetrazoles | 1994 |
Taurine release from mouse hippocampal slices: effects of glutamatergic substances and hypoxia.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Female; Glutamic Acid; Hippocampus; Kainic Acid; Male; Mice; N-Methylaspartate; Nitrogen; Oxygen; Potassium; Quisqualic Acid; Taurine | 1994 |
Release of [3H]GABA evoked by glutamate receptor agonists in cultured chick retina cells: effect of Ca2+.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cells, Cultured; Chick Embryo; Dizocilpine Maleate; Excitatory Amino Acid Agonists; GABA Antagonists; gamma-Aminobutyric Acid; Kainic Acid; N-Methylaspartate; Nicotinic Acids; Nipecotic Acids; Oximes; Quisqualic Acid; Retina; Tritium | 1994 |
Effects of the epileptogenic agent strychnine on membrane currents elicited by agonists of the NMDA and non-NMDA receptors in Xenopus oocytes.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Electrophysiology; Glycine; Ion Channels; Kainic Acid; N-Methylaspartate; Oocytes; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; RNA, Messenger; Strychnine; Xenopus laevis | 1995 |
A glutamate-activated chloride current in cone-driven ON bipolar cells of the white perch retina.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Chloride Channels; Chlorides; Cycloleucine; Dendrites; Glutamic Acid; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Kynurenic Acid; Membrane Potentials; N-Methylaspartate; Neurotoxins; Patch-Clamp Techniques; Perches; Picrotoxin; Quinoxalines; Quisqualic Acid; Receptors, Metabotropic Glutamate; Retina; Retinal Cone Photoreceptor Cells; Strychnine | 1995 |
AMPA receptor activation regulates the glutamate metabotropic receptor stimulated phosphatidylinositol turnover in human cerebral cortex slices.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adolescent; Adult; Aged; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Calcimycin; Cerebral Cortex; Child; Cycloleucine; Dizocilpine Maleate; Female; Glutamic Acid; Humans; Male; Middle Aged; N-Methylaspartate; Phosphatidylinositols; Quisqualic Acid; Receptors, AMPA; Receptors, Metabotropic Glutamate; Signal Transduction; Tetrodotoxin | 1995 |
Neurotoxicity of acute glutamate transport blockade depends on coactivation of both NMDA and AMPA/Kainate receptors in organotypic hippocampal cultures.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acid Transport System X-AG; Animals; ATP-Binding Cassette Transporters; Cell Differentiation; Dose-Response Relationship, Drug; Glutamic Acid; Hippocampus; N-Methylaspartate; Neurons; Neurotoxins; Organ Culture Techniques; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate | 1995 |
Biphasic effects of sigma ligands on the neuronal response to N-methyl-D-aspartate.
Topics: Acetylcholine; Animals; Dose-Response Relationship, Drug; Electrophysiology; Hippocampus; Injections, Intravenous; Iontophoresis; Ligands; Male; N-Methylaspartate; Pyramidal Cells; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, sigma | 1995 |
Long-term potentiation in the piriform cortex is blocked by lead.
Topics: 2-Amino-5-phosphonovalerate; Animals; Child; Evoked Potentials; Humans; In Vitro Techniques; Intelligence; Lead; Lead Poisoning; Long-Term Potentiation; Male; N-Methylaspartate; Olfactory Pathways; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Synapses | 1994 |
Induction of neuronal apoptosis by excitotoxins associated with long-lasting increase of 12-O-tetradecanoylphorbol 13-acetate-responsive element-binding activity.
Topics: Animals; Apoptosis; Base Sequence; Binding Sites; Dizocilpine Maleate; DNA; Embryo, Mammalian; Excitatory Amino Acid Agonists; Glutamic Acid; Molecular Sequence Data; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Tetradecanoylphorbol Acetate; Trans-Activators | 1995 |
Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors.
Topics: Alanine; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Cell Line; Chelating Agents; Cycloleucine; Embryo, Mammalian; Fetus; Glioma; Glutamic Acid; Hippocampus; Humans; Indoles; Kidney; Kinetics; Maleimides; N-Methylaspartate; Neuroblastoma; Neurons; Neurotoxins; PC12 Cells; Phosphatidylinositol 4,5-Diphosphate; Phosphatidylinositol Phosphates; Protein Kinase C; Protein Processing, Post-Translational; Pyrimidines; Quinacrine; Quisqualic Acid; Rats; Receptors, Metabotropic Glutamate; Recombinant Proteins; Tetradecanoylphorbol Acetate; Transfection; Tumor Cells, Cultured | 1995 |
N-methyl-D-aspartate induces regular firing patterns in the cat lateral habenula in vivo.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cats; Ibotenic Acid; Iontophoresis; Kainic Acid; Magnesium; Male; Membrane Potentials; N-Methylaspartate; Neurons; Quisqualic Acid; Receptors, Amino Acid; Stereotaxic Techniques; Thalamus | 1993 |
Respiratory responses to microinjection of excitatory amino acid agonists in ventrolateral regions of the lateral parabrachial nucleus in the cat.
Topics: Animals; Axonal Transport; Brain; Cats; Dose-Response Relationship, Drug; Electric Stimulation; Female; Glutamates; Glutamic Acid; Horseradish Peroxidase; Kainic Acid; Male; Microinjections; N-Methylaspartate; Neurons; Quisqualic Acid; Receptors, Glutamate; Respiration; Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate; Wheat Germ Agglutinins | 1993 |
Quisqualate resolves two distinct metabotropic [3H]glutamate binding sites.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Autoradiography; Binding, Competitive; Brain Chemistry; Corpus Striatum; Cycloleucine; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Ibotenic Acid; In Vitro Techniques; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid | 1993 |
L-NAME blocks responses to NMDA, substance P and noxious cutaneous stimuli in cat dorsal horn.
Topics: Animals; Appetite Depressants; Arginine; Cats; Electrodes; Electrophysiology; Extracellular Space; Iontophoresis; N-Methylaspartate; NG-Nitroarginine Methyl Ester; Physical Stimulation; Quisqualic Acid; Skin; Skin Physiological Phenomena; Spinal Cord; Substance P | 1993 |
Glutamate receptor agonists enhance the expression of BDNF mRNA in cultured cerebellar granule cells.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain-Derived Neurotrophic Factor; Cell Survival; Cells, Cultured; Cerebellum; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Kinetics; Kynurenic Acid; Molecular Weight; N-Methylaspartate; Nerve Growth Factors; Nerve Tissue Proteins; Quinoxalines; Quisqualic Acid; Rats; Rats, Sprague-Dawley; RNA; RNA, Messenger; Tetrodotoxin; Transcription, Genetic | 1993 |
Molecular cloning, functional expression, and pharmacological characterization of an N-methyl-D-aspartate receptor subunit from human brain.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acid Sequence; Animals; Cloning, Molecular; Dizocilpine Maleate; DNA; Female; Frontal Lobe; Gene Library; Glutamates; Glutamic Acid; Glycine; Humans; Ibotenic Acid; Kainic Acid; Macromolecular Substances; Molecular Sequence Data; N-Methylaspartate; Oocytes; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; RNA, Messenger; Sequence Homology, Amino Acid; Transcription, Genetic; Xenopus laevis | 1993 |
Ionotropic non-N-methyl-D-aspartate agonists induce retraction of dendritic spinules from retinal horizontal cells.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Carps; Cell Movement; Cyclopentanes; Dendrites; Ibotenic Acid; N-Methylaspartate; Quisqualic Acid; Receptors, Neurotransmitter; Retina | 1993 |
Acute mechanical hyperalgesia is produced by coactivation of AMPA and metabotropic glutamate receptors.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cycloleucine; Hot Temperature; Ibotenic Acid; Male; N-Methylaspartate; Neurotoxins; Pain; Pain Measurement; Pain Threshold; Physical Stimulation; Quinoxalines; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Spinal Cord | 1993 |
Excitatory amino acid receptor mediation of sensory inputs to functionally identified dorsal horn neurons in cat spinal cord.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cats; Decerebrate State; Evoked Potentials; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Ketamine; Kynurenic Acid; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Receptors, Amino Acid; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Synapses | 1993 |
7-Chlorokynurenate prevents NMDA-induced and kainate-induced striatal lesions.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain Diseases; Choline O-Acetyltransferase; Corpus Striatum; Dose-Response Relationship, Drug; Kainic Acid; Kynurenic Acid; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Serine | 1993 |
Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated.
Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzazepines; Cats; Caudate Nucleus; Dopamine; Ergolines; In Vitro Techniques; N-Methylaspartate; Neostriatum; Quinpirole; Quisqualic Acid; Rats; Receptors, Dopamine; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate | 1993 |
GABAA receptor-mediated inhibition of N-methyl-D-aspartate-evoked [3H]dopamine release from mesencephalic cell cultures.
Topics: Animals; Baclofen; Cells, Cultured; Dopamine; Flunitrazepam; GABA Agonists; GABA Antagonists; gamma-Aminobutyric Acid; Kainic Acid; Mesencephalon; Muscimol; N-Methylaspartate; Picrotoxin; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, GABA; Ventral Tegmental Area | 1994 |
Excitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neurons.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Blotting, Western; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Cell Aggregation; Cells, Cultured; Dizocilpine Maleate; Glutamic Acid; Glycine; Hippocampus; Immunohistochemistry; Intercellular Signaling Peptides and Proteins; Kinetics; Microscopy, Fluorescence; N-Methylaspartate; Neurons; Neurotoxins; Peptides; Phosphorylation; Potassium Chloride; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate | 1995 |
Spatial integration of local transmitter responses in motoneurones of the turtle spinal cord in vitro.
Topics: Animals; Dendrites; gamma-Aminobutyric Acid; Glutamic Acid; In Vitro Techniques; Ionophores; Motor Neurons; N-Methylaspartate; Quisqualic Acid; Spinal Cord; Synapses; Synaptic Transmission; Tetraethylammonium; Tetraethylammonium Compounds; Turtles | 1994 |
Investigations of neurotoxicity and neuroprotection within the nucleus basalis of the rat.
Topics: Acetylcholine; Animals; Basal Ganglia; Behavior, Animal; Cerebral Cortex; Choline O-Acetyltransferase; Male; Memantine; Memory Disorders; N-Methylaspartate; Nervous System Diseases; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Space Perception | 1994 |
Sodium nitroprusside modulates NMDA response in the rat supraoptic neurons in vitro.
Topics: Animals; Arginine; Cyclic GMP; Ferricyanides; In Vitro Techniques; Isosorbide Dinitrate; Kainic Acid; Male; Membrane Potentials; N-Methylaspartate; Neurons; Nitroarginine; Nitroprusside; Protein Kinases; Quisqualic Acid; Rats; Rats, Wistar; Supraoptic Nucleus | 1994 |
Ketamine inhibits glutamate-, N-methyl-D-aspartate-, and quisqualate-stimulated cGMP production in cultured cerebral neurons.
Topics: Animals; Brain; Cells, Cultured; Cyclic GMP; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamic Acid; Ketamine; N-Methylaspartate; Neurons; Nitric Oxide; Nitroprusside; Quisqualic Acid; Rats; Rats, Sprague-Dawley | 1995 |
Regulation of dopamine levels in intrastriatal grafts of fetal mesencephalic cell suspension: an in vivo voltammetric approach.
Topics: 2-Amino-5-phosphonovalerate; 3,4-Dihydroxyphenylacetic Acid; Analysis of Variance; Animals; Benzazepines; Brain Tissue Transplantation; Cerebral Ventricles; Corpus Striatum; Dizocilpine Maleate; Dopamine; Dopamine D2 Receptor Antagonists; Female; Fetal Tissue Transplantation; Glutamic Acid; Injections, Intraventricular; Kinetics; Mesencephalon; N-Methylaspartate; Oxidopamine; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Dopamine D1; Sulpiride; Time Factors; Transplantation, Heterotopic | 1994 |
Excitatory amino acid-induced phosphoinositide hydrolysis in Müller glia.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Aspartic Acid; Calcium; Calcium Channel Blockers; Chickens; Dizocilpine Maleate; Glutamates; Glutamic Acid; Hydrolysis; Inositol Phosphates; Kainic Acid; N-Methylaspartate; Neuroglia; Quinoxalines; Quisqualic Acid; Receptors, Amino Acid; Retina; Tritium | 1993 |
Mechanisms underlying developmental changes in the expression of metabotropic glutamate receptors in cultured cerebellar granule cells: homologous desensitization and interactive effects involving N-methyl-D-aspartate receptors.
Topics: Aging; Animals; Carbachol; Cells, Cultured; Cerebellum; Glutamates; Glutamic Acid; Hydrolysis; N-Methylaspartate; Phosphatidylinositol Phosphates; Potassium; Quisqualic Acid; Rats; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; RNA, Messenger | 1993 |
Pharmacological and electrographic properties of epileptiform activity induced by elevated K+ and lowered Ca2+ and Mg2+ concentration in rat hippocampal slices.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Calcium; Carbachol; Electrophysiology; Epilepsy; Evoked Potentials; Hippocampus; In Vitro Techniques; Magnesium; Membrane Potentials; Microelectrodes; N-Methylaspartate; Neurons; Potassium; Pyramidal Tracts; Quaternary Ammonium Compounds; Quinoxalines; Quisqualic Acid; Rats; Rats, Wistar; Temperature | 1993 |
Effects of ammonium ions on synaptic transmission and on responses to quisqualate and N-methyl-D-aspartate in hippocampal CA1 pyramidal neurons in vitro.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Ammonium Chloride; Animals; Electric Stimulation; Hippocampus; In Vitro Techniques; Magnesium; Male; Membrane Potentials; N-Methylaspartate; Pyramidal Cells; Quinoxalines; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Synaptic Transmission | 1993 |
Heterocarrier-mediated reciprocal modulation of glutamate and glycine release in rat cerebral cortex and spinal cord synaptosomes.
Topics: Animals; Aspartic Acid; Cerebral Cortex; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Glycine; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Sodium; Spinal Cord; Synaptosomes | 1994 |
Re-expression of glia-derived nexin/protease nexin 1 depends on mode of lesion-induction or terminal degeneration: observations after excitotoxin or 6-hydroxydopamine lesions of rat substantia nigra.
Topics: Amyloid beta-Protein Precursor; Animals; Carrier Proteins; Glial Fibrillary Acidic Protein; Ibotenic Acid; Immunohistochemistry; Male; N-Methylaspartate; Nerve Degeneration; Oxidopamine; Protease Nexins; Putamen; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Cell Surface; Receptors, Glutamate; Substantia Nigra; Tyrosine 3-Monooxygenase; Up-Regulation | 1994 |
An ibotenate-selective metabotropic glutamate receptor mediates protein phosphorylation in cultured hippocampal pyramidal neurons.
Topics: Animals; Calcium; Cycloleucine; Diglycerides; Embryo, Mammalian; Glutamates; Glutamic Acid; Hippocampus; Ibotenic Acid; Inositol; Inositol Phosphates; Kainic Acid; Myristic Acid; Myristic Acids; N-Methylaspartate; Nerve Tissue Proteins; Neurotoxins; Pertussis Toxin; Phosphatidylcholines; Phosphatidylinositols; Phosphoproteins; Phosphorylation; Protein Kinase C; Pyramidal Cells; Quisqualic Acid; Rats; Receptors, Glutamate; Stearic Acids; Virulence Factors, Bordetella | 1994 |
The effect of L-glutamate on the afferent resting activity in the cephalopod statocyst.
Topics: Action Potentials; Afferent Pathways; Animals; Aspartic Acid; Decapodiformes; Excitatory Amino Acid Antagonists; Female; Glutamates; Glutamic Acid; Kainic Acid; Male; Mollusca; N-Methylaspartate; Nerve Fibers; Octopodiformes; Postural Balance; Quisqualic Acid; Species Specificity | 1994 |
Glutamate agonists and [3H]GABA release from rat hippocampal slices: involvement of metabotropic glutamate receptors in the quisqualate-evoked release.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Calcium; Dizocilpine Maleate; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Kinetics; Male; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate | 1994 |
NMDA and quisqualate modulation of visceral nociception in the rat.
Topics: 2-Amino-5-phosphonovalerate; Animals; Blood Pressure; Colon; Dose-Response Relationship, Drug; Male; N-Methylaspartate; Nociceptors; Pain; Quinoxalines; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Rectum | 1994 |
Effects of the polyamine spermidine on NMDA-induced arterial hypertension in freely moving rats.
Topics: Animals; Biguanides; Blood Pressure; Drug Synergism; Hypertension; Male; Microinjections; N-Methylaspartate; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Spermidine | 1994 |
Kainic acid stimulates uptake of divalent cations in postnatal cochlear neurons.
Topics: Animals; Cations, Divalent; Cobalt; Cochlea; Cricetinae; Dose-Response Relationship, Drug; Glutamic Acid; Kainic Acid; N-Methylaspartate; Neurons; Organ Culture Techniques; Quinoxalines; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate | 1994 |
Functional and morphological changes induced by transient in vivo ischemia.
Topics: Animals; Cell Death; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Ischemic Attack, Transient; Long-Term Potentiation; Magnesium; Male; Membrane Potentials; N-Methylaspartate; Pyramidal Tracts; Quisqualic Acid; Rats; Reference Values; Synapses | 1994 |
NMDA and non-NMDA receptors mediating nociceptive and non-nociceptive transmission in spinal cord of cat.
Topics: Animals; Cats; Electric Stimulation; Excitatory Amino Acid Antagonists; Female; Kainic Acid; Male; N-Methylaspartate; Nerve Fibers; Neurons; Nociceptors; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Tibial Nerve | 1993 |
Regulation of D-aspartate release by glutamate and GABA receptors in cerebral cortical slices from developing and ageing mice.
Topics: Aging; Animals; Aspartic Acid; Cerebellum; Cerebral Cortex; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; gamma-Aminobutyric Acid; Glycine; In Vitro Techniques; Kainic Acid; Male; Mice; N-Methylaspartate; Quisqualic Acid; Receptors, GABA; Receptors, GABA-A; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Taurine | 1994 |
Glutamate receptor binding in juvenile and adult Rana pipiens CNS.
Topics: Afferent Pathways; Animals; Axons; Brain; Eye Enucleation; Horseradish Peroxidase; N-Methylaspartate; Nerve Degeneration; Quisqualic Acid; Rana pipiens; Receptors, Glutamate | 1994 |
The effects of sigma ligands and of neuropeptide Y on N-methyl-D-aspartate-induced neuronal activation of CA3 dorsal hippocampus neurones are differentially affected by pertussin toxin.
Topics: Animals; Anticonvulsants; Cinnamates; Cyclopropanes; Drug Synergism; GTP-Binding Proteins; Guanidines; Haloperidol; Hippocampus; Ligands; Male; N-Methylaspartate; Neurons; Neuropeptide Y; Pentazocine; Pertussis Toxin; Pyramidal Cells; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, sigma; Virulence Factors, Bordetella | 1994 |
Non-classical glutamate receptors, blocked by both NMDA and non-NMDA antagonists, stimulate nitric oxide production in neurons.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Arginine; Cells, Cultured; Corpus Striatum; Cyclic GMP; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Female; Mice; N-Methylaspartate; Neurons; Nitric Oxide; Nitroarginine; omega-N-Methylarginine; Pregnancy; Quinoxalines; Quisqualic Acid; Receptors, Glutamate | 1993 |
The effects of neurotransmitters on the integrative properties of spinal neurons in the lamprey.
Topics: Amino Acids; Animals; Data Interpretation, Statistical; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; Lampreys; Membrane Potentials; Models, Neurological; N-Methylaspartate; Neurons; Neurotransmitter Agents; Quisqualic Acid; Spinal Cord; Synapses | 1993 |
The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Cats; Decerebrate State; Electromyography; Glutamates; Glutamic Acid; Hindlimb; Injections, Spinal; Kainic Acid; Laminectomy; Locomotion; Motor Activity; Muscles; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Spinal Cord; Time Factors | 1993 |
Glutamate neurotoxicity: a role for non-N-methyl-D-aspartate receptors?
Topics: Animals; Brain; Cells, Cultured; Choline O-Acetyltransferase; Glutamates; Glutamic Acid; Kainic Acid; N-Methylaspartate; Nerve Degeneration; Quisqualic Acid; Rats; Receptors, N-Methyl-D-Aspartate; Somatostatin | 1993 |
Optical imaging of parallel fiber activation in the rat cerebellar cortex: spatial effects of excitatory amino acids.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anticonvulsants; Cerebellar Cortex; Electric Stimulation; Evoked Potentials; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Kainic Acid; Kynurenic Acid; Membrane Potentials; N-Methylaspartate; Nerve Fibers; Quisqualic Acid; Rats; Rats, Sprague-Dawley | 1993 |
Effects of excitatory amino acids on inositol phosphate accumulation in slices of the cerebral cortex of young and aged rats.
Topics: Aging; Amino Acids; Animals; Carbachol; Cerebral Cortex; Glutamates; Glutamic Acid; Inositol Phosphates; Male; N-Methylaspartate; Norepinephrine; Quisqualic Acid; Rats; Rats, Sprague-Dawley | 1993 |
Pharmacological characterization of metabotropic glutamate receptors in cultured cerebellar granule cells.
Topics: Alanine; Amino Acids, Diamino; Animals; Cells, Cultured; Cerebellum; Cyanobacteria Toxins; Cycloleucine; Drug Interactions; Enzyme Activation; Glutamates; Glutamic Acid; Ibotenic Acid; Magnesium; N-Methylaspartate; Phosphatidylinositol Phosphates; Phosphatidylinositols; Phosphoinositide Phospholipase C; Phosphoric Diester Hydrolases; Quisqualic Acid; Rats; Receptors, Glutamate | 1993 |
Effect of excitatory amino acid on the hypothalamo-pituitary-adrenal axis in the rat during the stress-hyporesponsive period.
Topics: 2-Amino-5-phosphonovalerate; Adrenocorticotropic Hormone; Amino Acids; Animals; Corticosterone; Corticotropin-Releasing Hormone; Hypothalamo-Hypophyseal System; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Pituitary-Adrenal System; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Stress, Physiological | 1993 |
The triggering of spreading depression in the chicken retina: a pharmacological study.
Topics: Adenosine; Amino Acids; Animals; Baclofen; Calcium Channel Blockers; Chickens; Depression, Chemical; Excitatory Amino Acid Antagonists; Eye Enucleation; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; Membrane Potentials; N-Methylaspartate; Potassium; Quisqualic Acid; Receptors, Amino Acid; Receptors, N-Methyl-D-Aspartate; Retina | 1993 |
Electrophysiological characterization of excitatory amino acid responses in rat lateral parabrachial neurons in vitro.
Topics: 2-Amino-5-phosphonovalerate; Animals; Electrophysiology; Evoked Potentials; In Vitro Techniques; Kainic Acid; Kinetics; Magnesium; Male; N-Methylaspartate; Neurons; Pons; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Serine; Time Factors | 1993 |
Long-term GABA treatment elicits supersensitivity of quisqualate-preferring metabotropic glutamate receptor in cultured rat cerebellar neurons.
Topics: Animals; Baclofen; Carbachol; Cells, Cultured; Cerebellum; Drug Tolerance; GABA-A Receptor Antagonists; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Kainic Acid; N-Methylaspartate; Neurons; Potassium Chloride; Pyridazines; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Receptors, Glutamate | 1993 |
Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzothiadiazines; Cell Line; Cells, Cultured; Diazoxide; Diuretics; Electric Stimulation; Evoked Potentials; Hippocampus; Humans; Kainic Acid; Membrane Potentials; Molecular Structure; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Structure-Activity Relationship; Synapses; Time Factors | 1993 |
Analysis of L-[3H]-glutamate radioligand binding to plasma membranes of the ampullae of Lorenzini of skates.
Topics: Animals; Cations; Cell Membrane; Electrophysiology; Glutamates; Glutamic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Quisqualic Acid; Receptors, Glutamate; Skates, Fish; Synaptic Membranes | 1993 |
Characteristics of [3H]glutamate binding sites in rat cerebellum.
Topics: Animals; Binding Sites; Binding, Competitive; Cerebellum; Glutamates; Glutamic Acid; Kainic Acid; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Glutamate; Species Specificity; Synaptic Membranes | 1993 |
Diverse modulation by systemic lidocaine of iontophoretic NMDA and quisqualic acid induced excitations on rat dorsal horn neurons.
Topics: Animals; Drug Synergism; Glycine; Injections, Intravenous; Iontophoresis; Kynurenic Acid; Lidocaine; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Strychnine | 1993 |
Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo.
Topics: Animals; Dopamine; Electrophysiology; Iontophoresis; Kainic Acid; Male; Mesencephalon; N-Methylaspartate; Neurons; Neurotoxins; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate | 1993 |
Selective excitotoxic pathology in the rat hippocampus.
Topics: Animals; Brain; Brain Damage, Chronic; Cell Death; Hippocampus; Ibotenic Acid; Kainic Acid; Male; N-Methylaspartate; Nerve Degeneration; Neurotoxins; Organ Specificity; Piperazines; Quisqualic Acid; Rats; Rats, Sprague-Dawley | 1993 |
Muscarinic potentiation of excitatory amino acid-evoked dopamine release in mesencephalic cells: specificity for the NMDA response and role of intracellular messengers.
Topics: Alkaloids; Animals; Carbachol; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Dopamine; Drug Synergism; Fetus; Isoquinolines; Kainic Acid; Kinetics; Mesencephalon; N-Methylaspartate; Neurons; Oxotremorine; Protein Kinase C; Quisqualic Acid; Rats; Receptors, Muscarinic; Receptors, N-Methyl-D-Aspartate; Second Messenger Systems; Staurosporine | 1993 |
Acute, chronic and differential effects of several anesthetic barbiturates on glutamate receptor activation in neuronal culture.
Topics: Animals; Calcium; Cells, Cultured; Cerebellum; Cyproheptadine; Glutamates; Kainic Acid; Membrane Potentials; N-Methylaspartate; Neurons; Pentobarbital; Potassium Chloride; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Secobarbital; Thiamylal | 1993 |
Enkephalin suppresses afferent cochlear neurotransmission.
Topics: Animals; Cochlea; Dendrites; Enkephalins; Guinea Pigs; Hair Cells, Auditory, Inner; Kainic Acid; N-Methylaspartate; Naloxone; Neurons, Afferent; Neurons, Efferent; Quisqualic Acid; Synaptic Transmission | 1993 |
Use-dependent pentobarbital block of kainate and quisqualate currents.
Topics: Animals; Cells, Cultured; Evoked Potentials; Kainic Acid; N-Methylaspartate; Neurons; Pentobarbital; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Kainic Acid | 1993 |
Glutathione modulates the N-methyl-D-aspartate receptor-activated calcium influx into cultured rat cerebellar granule cells.
Topics: Animals; Biological Transport; Calcium; Cells, Cultured; Cerebellum; Cysteine; Dithiothreitol; Glutathione; Glutathione Disulfide; Kainic Acid; Kinetics; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate | 1993 |
The cytochromes P-450 are not involved in the modulation of the N-methyl-D-aspartate response by sigma ligands in the rat CA3 dorsal hippocampus.
Topics: Animals; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Electrophysiology; Guanidines; Hippocampus; Iontophoresis; Ligands; Male; N-Methylaspartate; Neurons; Paralysis; Phenobarbital; Proadifen; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, sigma; Zoxazolamine | 1993 |
The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats.
Topics: Animals; Animals, Newborn; Dendrites; Electrophysiology; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neurons; Potassium; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Spinal Cord | 1993 |
Cardiovascular responses to global cerebral ischemia: role of excitatory amino acids in the ventrolateral medullary pressor area.
Topics: Acetylcholine; Amino Acids; Animals; Antidiuretic Hormone Receptor Antagonists; Atropine; Blood Pressure; Brain Ischemia; Dose-Response Relationship, Drug; Glutamates; Heart Rate; Kainic Acid; Kynurenic Acid; Male; Medulla Oblongata; Muscimol; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Receptors, Vasopressin; Vasopressins | 1993 |
Calcium ion impedes translation initiation at the synapse.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Calcimycin; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Calmodulin; Cerebral Cortex; Cycloleucine; Depression, Chemical; Gene Expression Regulation; Ionophores; Long-Term Potentiation; N-Methylaspartate; Nerve Tissue Proteins; Phorbol 12,13-Dibutyrate; Phospholipases A; Phospholipases A2; Protein Biosynthesis; Quisqualic Acid; Rats; Receptors, Metabotropic Glutamate; Ribosomes; RNA, Messenger; Sulfonamides; Synapses | 1996 |
In vitro and in vivo antagonism of AMPA receptor activation by (3S, 4aR, 6R, 8aR)-6-[2-(1(2)H-tetrazole-5-yl) ethyl] decahydroisoquinoline-3-carboxylic acid.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain; Dose-Response Relationship, Drug; In Vitro Techniques; Isoquinolines; Male; Mice; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Tetrazoles; Time Factors | 1995 |
Glutamate receptor agonists modulate [Ca2+]i in isolated rat melanotropes.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cells, Cultured; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Fluorescent Dyes; Fura-2; Glutamic Acid; Glycine; Kainic Acid; Magnesium; Male; N-Methylaspartate; Pituitary Gland; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Receptors, Metabotropic Glutamate | 1995 |
In vivo electrochemical studies of the dynamic effects of locally applied excitatory amino acids in the striatum of the anesthetized rat.
Topics: Adolescent; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Corpus Striatum; Cricetinae; Dopamine; Dose-Response Relationship, Drug; Excitatory Amino Acids; Glutamic Acid; Humans; Kainic Acid; Male; N-Methylaspartate; Oxidation-Reduction; Potassium; Quinolinic Acid; Quisqualic Acid; Rats; Rats, Sprague-Dawley | 1996 |
Functional glutamate receptors in a subpopulation of anterior pituitary cells.
Topics: Animals; Calcium; Corticotropin-Releasing Hormone; Glutamic Acid; Gonadotropin-Releasing Hormone; Growth Hormone-Releasing Hormone; Kainic Acid; Male; N-Methylaspartate; Pituitary Gland, Anterior; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Glutamate; Thyrotropin-Releasing Hormone | 1996 |
Calcium signalling in granule neurones studied in cerebellar slices.
Topics: Acetylcholine; Age Factors; Animals; Animals, Newborn; Caffeine; Calcium; Calcium Channel Agonists; Cerebellum; Cycloleucine; Electric Conductivity; Electrophysiology; Excitatory Amino Acid Agonists; Excitatory Amino Acids; Homeostasis; Ion Channel Gating; Mice; Mice, Inbred CBA; N-Methylaspartate; Neurons; Neurotoxins; Organ Culture Techniques; Phosphodiesterase Inhibitors; Quisqualic Acid; Sensitivity and Specificity; Signal Transduction | 1996 |
Differential effects of sigma ligands on the N-methyl-D-aspartate response in the CA1 and CA3 regions of the dorsal hippocampus: effect of mossy fiber lesioning.
Topics: Acetylcholine; Animals; Anticonvulsants; Cinnamates; Colchicine; Cyclopropanes; Electrophysiology; Guanidines; Hippocampus; Male; N-Methylaspartate; Nerve Fibers; Neuropeptide Y; Neurotoxins; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Receptors, sigma | 1996 |
Glutamate depresses release by activating non-conventional glutamate receptors at crayfish nerve terminals.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Astacoidea; Axons; Calcium; Cell Membrane; Electric Conductivity; Electric Stimulation; Fura-2; Glutamic Acid; Muscles; N-Methylaspartate; Nerve Endings; Perfusion; Quisqualic Acid; Receptors, Glutamate; Synapses; Time Factors | 1996 |
Mechanisms for synchronous calcium oscillations in cultured rat cerebellar neurons.
Topics: Animals; Animals, Newborn; Calcium; Calcium Channel Blockers; Calcium-Transporting ATPases; Cells, Cultured; Cerebellum; Enzyme Inhibitors; Ionomycin; Kainic Acid; Kinetics; Magnesium; Membrane Potentials; N-Methylaspartate; Neuroglia; Neurons; Oscillometry; Quisqualic Acid; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Tetrodotoxin; Thapsigargin; Time Factors | 1996 |
Effects of excitatory amino acids on phosphoinositide metabolism in frog retina.
Topics: Animals; Carbachol; Excitatory Amino Acid Agonists; In Vitro Techniques; Kainic Acid; Microscopy, Electron; N-Methylaspartate; Phosphatidylinositols; Quisqualic Acid; Ranidae; Retina | 1996 |
NMDA and non-NMDA sensitive [L-3H]glutamate receptor binding in the brain of the Naples high- and low-excitability rats: an autoradiographic study.
Topics: Animals; Attention Deficit Disorder with Hyperactivity; Autoradiography; Brain; Brain Chemistry; Excitatory Amino Acid Agonists; Male; Motor Activity; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Species Specificity | 1996 |
Chronic alcohol reduces calcium signaling elicited by glutamate receptor stimulation in developing cerebellar neurons.
Topics: Animals; Animals, Newborn; Calcium; Cells, Cultured; Cerebellum; Ethanol; N-Methylaspartate; Quisqualic Acid; Rats; Receptors, Glutamate; Time Factors | 1996 |
G-protein activation by metabotropic glutamate receptors reduces spike frequency adaptation in neocortical neurons.
Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Adult; Alanine; Amino Acids, Dicarboxylic; Animals; Benzoates; Cycloleucine; Enzyme Inhibitors; Frontal Lobe; Glycine; GTP-Binding Proteins; Guanosine Diphosphate; Humans; Isoquinolines; N-Methylaspartate; Nerve Tissue Proteins; Neurons; Protein Kinase Inhibitors; Protein Kinases; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Signal Transduction; Staurosporine; Sulfonamides; Thionucleotides | 1996 |
Potentiation of spontaneous acetylcholine release from motor nerve terminals by glutamate in Xenopus tadpoles.
Topics: Acetylcholine; Alanine; Animals; Calcium; Calcium Channel Blockers; Cycloleucine; Excitatory Amino Acid Agonists; Glutamic Acid; Kainic Acid; Larva; Motor Endplate; N-Methylaspartate; Neurotoxins; Quisqualic Acid; Second Messenger Systems; Verapamil; Xenopus laevis | 1996 |
Non-NMDA receptors transmit cardiopulmonary C fibre input in nucleus tractus solitarii in rats.
Topics: 2-Amino-5-phosphonovalerate; Afferent Pathways; Animals; Biguanides; Brain Mapping; Chemoreceptor Cells; Excitatory Amino Acid Antagonists; Heart; Heart Atria; Heart Conduction System; Heart Ventricles; Kynurenic Acid; Lung; Male; N-Methylaspartate; Nerve Fibers; Neurons; Pressoreceptors; Quinoxalines; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Serotonin Receptor Agonists; Solitary Nucleus; Vagus Nerve | 1996 |
Glutamate as a putative neurotransmitter in the mollusc, Lymnaea stagnalis.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cells, Cultured; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Guanosine Diphosphate; Kainic Acid; Lymnaea; Membrane Potentials; N-Methylaspartate; Nervous System Physiological Phenomena; Neurons; Neuropeptides; Neurotransmitter Agents; Patch-Clamp Techniques; Quisqualic Acid; Synapses; Thionucleotides | 1996 |
Potentiation by dehydroepiandrosterone of the neuronal response to N-methyl-D-aspartate in the CA3 region of the rat dorsal hippocampus: an effect mediated via sigma receptors.
Topics: Acetylcholine; Animals; Dehydroepiandrosterone; Dose-Response Relationship, Drug; Drug Synergism; Female; Hippocampus; Male; N-Methylaspartate; Ovariectomy; Pregnenolone; Progesterone; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, sigma; Stimulation, Chemical; Testosterone | 1996 |
Effect of alpha-MSH upon cyclic AMP levels induced by the glutamatergic agonists NMDA, quisqualic acid, and kainic acid.
Topics: alpha-MSH; Animals; Caudate Nucleus; Cyclic AMP; Drug Interactions; Excitatory Amino Acid Agonists; In Vitro Techniques; Kainic Acid; Male; N-Methylaspartate; Nucleus Accumbens; Putamen; Quisqualic Acid; Rats; Rats, Wistar | 1996 |
The influence of nitric oxide on perigeniculate GABAergic cell activity in the anaesthetized cat.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cats; Cycloleucine; Enzyme Inhibitors; gamma-Aminobutyric Acid; Geniculate Bodies; N-Methylaspartate; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Nitroprusside; Penicillamine; Photic Stimulation; Quisqualic Acid; S-Nitroso-N-Acetylpenicillamine | 1996 |
gp120, a human immunodeficiency virus-1 coat protein, augments excitotoxic hippocampal injury in perinatal rats.
Topics: Animals; Animals, Newborn; Autoradiography; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Hippocampus; HIV Envelope Protein gp120; Injections; Male; N-Methylaspartate; Neurotoxins; Piperazines; Pyrrolidinones; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate | 1997 |
Electrophysiological and electrochemical responses of NMDA in the cerebellum: interactions with nonadrenergic pathway.
Topics: Adrenergic Fibers; Animals; Cerebellum; Membrane Potentials; N-Methylaspartate; Norepinephrine; Quisqualic Acid; Rats; Rats, Sprague-Dawley | 1996 |
Effect of glutamate receptor phosphorylation by endogenous protein kinases on electrical activity of isolated postsynaptic densities of rat cortex and hippocampus.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Adenosine Triphosphate; Animals; Calcium; Calmodulin; Cerebral Cortex; Egtazic Acid; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glycine; Hippocampus; Kainic Acid; Long-Term Potentiation; Magnesium; N-Methylaspartate; Patch-Clamp Techniques; Phosphorylation; Protein Kinases; Quisqualic Acid; Rats; Receptors, Glutamate; Synapses | 1997 |
Specific [3H]glutamate binding in the cerebral cortex and hippocampus of rats during development: effect of homocysteine-induced seizures.
Topics: Aging; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Analysis of Variance; Animals; Binding Sites; Cerebral Cortex; Glutamic Acid; Hippocampus; Homocysteine; Kainic Acid; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Wistar; Reference Values; Seizures; Synaptic Membranes; Tritium | 1997 |
Excitotoxic lesions of histaminergic neurons by excitatory amino acid agonists in the rat brain.
Topics: Animals; Brain; Excitatory Amino Acid Agonists; Histamine; Hypothalamus; Ibotenic Acid; Male; N-Methylaspartate; Neurons; Neurotoxins; Quisqualic Acid; Rats; Rats, Wistar | 1997 |
Dopamine function in the prefrontal cortex.
Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Animals; Benzazepines; Dopamine; Dopamine Antagonists; Glutamic Acid; Models, Neurological; N-Methylaspartate; Neurons; Prefrontal Cortex; Pyramidal Cells; Quisqualic Acid; Rats; Receptors, Dopamine D1; Receptors, Dopamine D2 | 1998 |
Glutamate stimulates 2-deoxyglucose uptake in rat cerebellar granule cells.
Topics: Animals; Cerebellum; Deoxyglucose; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamic Acid; Kainic Acid; N-Methylaspartate; Neurons; Phosphorylation; Quisqualic Acid; Rats; Rats, Wistar; Temperature | 1997 |
Intracellular free Ca2+ elevations in cultured astroglia induced by neuroligands playing a role in cerebral ischemia.
Topics: Adenosine Triphosphate; Adrenergic alpha-Agonists; Animals; Animals, Newborn; Astrocytes; Brain Ischemia; Calcium; Cells, Cultured; Cytoplasm; Excitatory Amino Acid Agonists; Extracellular Space; Fluorescent Dyes; Fura-2; Glutamic Acid; Kainic Acid; N-Methylaspartate; Neurotransmitter Agents; Norepinephrine; Quisqualic Acid; Rats; Receptors, Glutamate; Serotonin; Spectrometry, Fluorescence; Vasoconstrictor Agents; Vasopressins | 1997 |
Impairment of brain kynurenic acid production by glutamate metabotropic receptor agonists.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cerebral Cortex; Cycloleucine; In Vitro Techniques; Kainic Acid; Kynurenic Acid; Male; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Sodium | 1997 |
Immunocytochemical characterization of quisqualic acid- and N-methyl-D-aspartate-induced excitotoxicity in the retina of chicks.
Topics: Animals; Antibody Specificity; Biomarkers; Carrier Proteins; Chickens; Choline O-Acetyltransferase; Dopamine; Enkephalin, Methionine; Excitatory Amino Acid Agonists; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Glucagon; Glutamate Decarboxylase; Immunohistochemistry; Intracellular Membranes; Isoenzymes; Lysosomes; Male; Membrane Proteins; Membrane Transport Proteins; Myopia; N-Methylaspartate; Neurotoxins; Organic Anion Transporters; Parvalbumins; Protein Kinase C; Protein Kinase C beta; Protein Kinase C-alpha; Quisqualic Acid; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Retina; Serotonin; Tyrosine 3-Monooxygenase; Vasoactive Intestinal Peptide | 1998 |
Activation of non-NMDA receptors stimulates acetylcholine and GABA release from dorsal hippocampus: a microdialysis study in the rat.
Topics: Acetylcholine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Hippocampus; Male; Microdialysis; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Rats; Rats, Wistar; Receptors, AMPA; Tetrodotoxin | 1998 |
Prenatal ethanol exposure enhances glutamate release stimulated by quisqualate in rat cerebellar granule cell cultures.
Topics: Alcoholism; Amino Acids; Animals; Cells, Cultured; Cerebellum; Cycloleucine; Dizocilpine Maleate; Ethanol; Female; Glutamic Acid; Kainic Acid; N-Methylaspartate; Neurons; Potassium Chloride; Pregnancy; Pregnancy Complications; Prenatal Exposure Delayed Effects; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate | 1998 |
The effect of excitatory aminoacids on GABA release from mediobasal hypothalamus of female rats.
Topics: Animals; Depression, Chemical; Diestrus; Drug Implants; Estradiol; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acids; Female; gamma-Aminobutyric Acid; Glutamic Acid; Hypothalamus; Interneurons; Kainic Acid; N-Methylaspartate; Nerve Tissue Proteins; Nitric Oxide Synthase; Ovariectomy; Quinoxalines; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate | 1998 |
Calcium influx via ionotropic glutamate receptors causes long lasting inhibition of metabotropic glutamate receptor-coupled phosphoinositide hydrolysis.
Topics: Animals; Calcium; Cells, Cultured; Cerebellum; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; GTP-Binding Proteins; Hydrolysis; Kainic Acid; N-Methylaspartate; Phosphatidylinositols; Quinoxalines; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Glutamate; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Sodium Fluoride | 1998 |
Reduced mitochondrial manganese-superoxide dismutase activity exacerbates glutamate toxicity in cultured mouse cortical neurons.
Topics: Animals; Cells, Cultured; Cerebral Cortex; Excitatory Amino Acid Agonists; Glutamic Acid; Homozygote; Kainic Acid; Mice; Mice, Knockout; Mitochondria; N-Methylaspartate; Neurons; Oxidation-Reduction; Quisqualic Acid; Superoxide Dismutase | 1998 |
Activation of NMDA and non-NMDA receptors in the caudal ventrolateral medulla dilates the airways.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Atropine Derivatives; Autonomic Nervous System; Bronchoconstriction; Cholinergic Fibers; Dogs; Electric Stimulation; Excitatory Amino Acid Agonists; Female; Kainic Acid; Lung; Male; Medulla Oblongata; Muscle, Smooth; N-Methylaspartate; Parasympatholytics; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Stimulation, Chemical | 1998 |
Activation of NMDA receptors protects against glutamate neurotoxicity in the retina: evidence for the involvement of neurotrophins.
Topics: 2-Amino-5-phosphonovalerate; Animals; Apoptosis; Brain-Derived Neurotrophic Factor; Cycloleucine; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Kainic Acid; N-Methylaspartate; Nerve Growth Factors; Neuroprotective Agents; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptor Protein-Tyrosine Kinases; Receptor, Ciliary Neurotrophic Factor; Receptors, N-Methyl-D-Aspartate; Receptors, Nerve Growth Factor; Retina | 1999 |
Involvement of NMDA and non-NMDA receptors in transmission of spinal visceral nociception in cat.
Topics: 2-Amino-5-phosphonovalerate; Animals; Cats; Excitatory Amino Acid Agonists; Female; Kainic Acid; Male; N-Methylaspartate; Nociceptors; Pain; Quinoxalines; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Splanchnic Nerves; Viscera | 1999 |
Mediation and modulation by eicosanoids of responses of spinal dorsal horn neurons to glutamate and substance P receptor agonists: results with indomethacin in the rat in vivo.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Analgesics; Animals; Anti-Inflammatory Agents, Non-Steroidal; Calcium Signaling; Cyclooxygenase Inhibitors; Eicosanoids; Excitatory Amino Acid Agonists; Glutamic Acid; Indomethacin; Iontophoresis; Male; N-Methylaspartate; Neurons, Afferent; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Spinal Cord; Substance P | 1999 |
Inhibition of excitatory neurotransmitter-nitric oxide signaling pathway by inhalational anesthetics.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Anesthetics, Inhalation; Animals; Arginine; Cells, Cultured; Cerebral Cortex; Cyclic GMP; Drug Interactions; Enzyme Activation; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Guanylate Cyclase; Halothane; Isoflurane; Kainic Acid; N-Methylaspartate; Neurons; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitroprusside; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Signal Transduction | 1999 |
Glutamate and GABA activate different receptors and Cl(-) conductances in crab peptide-secretory neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzothiadiazines; Brachyura; Cells, Cultured; Chloride Channels; Chlorides; Concanavalin A; gamma-Aminobutyric Acid; Glutamic Acid; Glycine; Kainic Acid; N-Methylaspartate; Neurons; Patch-Clamp Techniques; Quisqualic Acid; Receptors, AMPA; Receptors, GABA; Receptors, Glutamate | 2000 |
Physiological activation of presynaptic metabotropic glutamate receptors increases intracellular calcium and glutamate release.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Axons; Brain Stem; Calcium; Chromones; Cycloleucine; Dendrites; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Fluorometry; Glutamic Acid; Glycine Agents; GTP-Binding Proteins; In Vitro Techniques; Lampreys; Larva; Membrane Potentials; N-Methylaspartate; Neuronal Plasticity; Neuroprotective Agents; Patch-Clamp Techniques; Presynaptic Terminals; Quisqualic Acid; Receptors, Metabotropic Glutamate; Strychnine; Tetrodotoxin | 2000 |
Effects of mild versus deep hypothermia on a cloned human brain glutamate transporter (GLT-1) expressed in Chinese hamster ovary cells.
Topics: Adult; Amino Acid Transport System X-AG; Animals; ATP-Binding Cassette Transporters; Biological Transport; Cell Division; Cell Membrane; Cerebral Cortex; CHO Cells; Cloning, Molecular; Cricetinae; Gene Library; Glutamic Acid; Humans; Hypothermia; Kainic Acid; Membrane Potentials; N-Methylaspartate; Patch-Clamp Techniques; Quisqualic Acid; Recombinant Proteins; Temperature | 2000 |
Chlormethiazole inhibits epileptiform activity by potentiating GABA(A) receptor function.
Topics: Action Potentials; Animals; Bicuculline; Cerebral Cortex; Chlormethiazole; Dose-Response Relationship, Drug; Epilepsy; gamma-Aminobutyric Acid; Male; N-Methylaspartate; Neurons; Neuroprotective Agents; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate; Tetrodotoxin; Valine | 2000 |
An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors.
Topics: Animals; Cells, Cultured; Cerebral Cortex; Enzyme Activation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glycine; Mice; N-Methylaspartate; Nerve Degeneration; Neural Inhibition; Neuroprotective Agents; Neurotoxins; Protein Kinase C; Quisqualic Acid; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Resorcinols; Time Factors | 2001 |
Influence of serotonin on the glutamate-induced excitations of secondary vestibular neurons in the rat.
Topics: Animals; Evoked Potentials; Excitatory Amino Acid Agonists; Glutamic Acid; Kainic Acid; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Amino Acid; Receptors, N-Methyl-D-Aspartate; Serotonin; Serotonin Receptor Agonists; Vestibular Nuclei | 2001 |
Glutamate receptor desensitization block potentiates the stimulated GABA release through external Ca2+-independent mechanisms from granule cells of olfactory bulb.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; gamma-Aminobutyric Acid; Glutamic Acid; In Vitro Techniques; Kinetics; Male; N-Methylaspartate; Neurons; Olfactory Bulb; Potassium Chloride; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Glutamate | 2001 |
Nitric oxide synthase inhibition and glutamate binding in quinolinate-lesioned rat hippocampus.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding, Competitive; Cell Membrane; Excitatory Amino Acid Agonists; Glutamic Acid; Hippocampus; Kainic Acid; Male; Molsidomine; N-Methylaspartate; Nerve Degeneration; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroarginine; Quinolinic Acid; Quisqualic Acid; Rats; Rats, Wistar; Tritium | 2002 |
Lead can inhibit NMDA-, K(+)-, QA/KA-induced increases in intracellular free Ca2+ in cultured rat hippocampal neurons.
Topics: Animals; Calcium; Cognition Disorders; Disease Models, Animal; Hippocampus; Kainic Acid; Lead; Learning Disabilities; Microscopy, Confocal; N-Methylaspartate; Neurons; Potassium; Quisqualic Acid; Rats; Rats, Wistar | 2002 |
Nefopam blocks voltage-sensitive sodium channels and modulates glutamatergic transmission in rodents.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Analgesics, Non-Narcotic; Animals; Binding, Competitive; Electroshock; Epilepsy; Excitatory Amino Acid Agonists; Glutamic Acid; Ion Channel Gating; Kainic Acid; Male; Mice; Mice, Inbred Strains; N-Methylaspartate; Nefopam; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Sodium Channels; Synaptic Transmission; Tritium | 2004 |
Distinct modulatory roles of sigma receptor subtypes on glutamatergic responses in the dorsal hippocampus.
Topics: Action Potentials; Analysis of Variance; Animals; Anisoles; Antipsychotic Agents; Benzamides; Dose-Response Relationship, Drug; Drug Interactions; Excitatory Amino Acid Agonists; Glutamic Acid; Hippocampus; Male; N-Methylaspartate; Piperidines; Propylamines; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, sigma | 2005 |
Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex.
Topics: Action Potentials; Animals; Anticonvulsants; gamma-Aminobutyric Acid; Glutamic Acid; Kainic Acid; Magnesium; N-Methylaspartate; Prefrontal Cortex; Quisqualic Acid; Rats; Rats, Wistar; Salts; Sodium; Synapses; Valproic Acid | 2006 |
Effects of TRH and its analogues on primary cortical neuronal cell damage induced by various excitotoxic, necrotic and apoptotic agents.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Apoptosis; Cells, Cultured; Enzyme Activation; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Female; Hydrogen Peroxide; JNK Mitogen-Activated Protein Kinases; Kainic Acid; Mice; Mitogen-Activated Protein Kinases; N-Methylaspartate; Necrosis; Neurons; Neuroprotective Agents; Phosphatidylinositol 3-Kinases; Pregnancy; Proto-Oncogene Proteins c-akt; Quisqualic Acid; Staurosporine; Thyrotropin-Releasing Hormone | 2009 |
Novel Functional Properties of Drosophila CNS Glutamate Receptors.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium Channels; Central Nervous System; Crystallography; Drosophila melanogaster; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; HEK293 Cells; Humans; Ligands; N-Methylaspartate; Quisqualic Acid; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid | 2016 |
Glutamatergic modulation of noradrenaline release in the rat median preoptic area.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Kainic Acid; Male; Microdialysis; N-Methylaspartate; Norepinephrine; Preoptic Area; Quisqualic Acid; Rats, Wistar; Receptors, N-Methyl-D-Aspartate | 2017 |