Page last updated: 2024-08-23

quisqualic acid and manganese

quisqualic acid has been researched along with manganese in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19904 (57.14)18.7374
1990's3 (42.86)18.2507
2000's0 (0.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Akeson, RL; Pruss, RM; Racke, MM; Wilburn, JL1
Jope, RS; Li, XH; Song, L1
Nicholson, C; Rice, ME1
Sato, H; Yamamoto, C1
Hablitz, JJ1
Sawada, S; Yamamoto, C1
Dale, N; Roberts, A1

Other Studies

7 other study(ies) available for quisqualic acid and manganese

ArticleYear
Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells.
    Neuron, 1991, Volume: 7, Issue:3

    Topics: Animals; Biological Transport; Calcium; Cells, Cultured; Cerebellum; Cobalt; Glutamates; Hippocampus; In Vitro Techniques; Ion Channel Gating; Ion Channels; Kainic Acid; Manganese; N-Methylaspartate; Neurons; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Kainic Acid; Receptors, Neurotransmitter

1991
Modulation of phosphoinositide metabolism in rat brain slices by excitatory amino acids, arachidonic acid, and GABA.
    Neurochemical research, 1990, Volume: 15, Issue:7

    Topics: Amino Acids; Animals; Arachidonic Acid; Arachidonic Acids; Brain; Calcium; Carbachol; Egtazic Acid; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Hydrolysis; Kinetics; Male; Manganese; Norepinephrine; Oxadiazoles; Phosphatidylinositols; Phospholipases A; Phospholipases A2; Quisqualic Acid; Rats; Rats, Inbred Strains; Verapamil

1990
Glutamate- and aspartate-induced extracellular potassium and calcium shifts and their relation to those of kainate, quisqualate and N-methyl-D-aspartate in the isolated turtle cerebellum.
    Neuroscience, 1990, Volume: 38, Issue:2

    Topics: Amino Acids; Animals; Aspartic Acid; Calcium; Cerebellum; Dose-Response Relationship, Drug; Extracellular Space; Glutamates; Glutamic Acid; In Vitro Techniques; Iontophoresis; Kainic Acid; Manganese; N-Methylaspartate; Potassium; Quisqualic Acid; Turtles

1990
Some properties of ionic channels activated by excitatory amino acids in hippocampal neurons.
    Experimental brain research, 1985, Volume: 57, Issue:2

    Topics: Amino Acids; Animals; Aspartic Acid; Electric Conductivity; Electric Stimulation; Glutamates; Glutamic Acid; Guinea Pigs; Hippocampus; Homocysteine; In Vitro Techniques; Ion Channels; Manganese; Oxadiazoles; Quisqualic Acid

1985
Action of excitatory amino acids and their antagonists on hippocampal neurons.
    Cellular and molecular neurobiology, 1985, Volume: 5, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Aminobutyrates; Animals; Aspartic Acid; Excitatory Amino Acid Antagonists; Glutamic Acid; Guinea Pigs; Hippocampus; Iontophoresis; Manganese; N-Methylaspartate; Neurons; Oxadiazoles; Quisqualic Acid; Tetrodotoxin; Valine

1985
Fast and slow depolarizing potentials induced by short pulses of kainic acid in hippocampal neurons.
    Brain research, 1984, Dec-24, Volume: 324, Issue:2

    Topics: Acetates; Acetic Acid; Animals; Glutamates; Glutamic Acid; Guinea Pigs; Hippocampus; In Vitro Techniques; Kainic Acid; Manganese; Membrane Potentials; Oxadiazoles; Pyrrolidines; Quisqualic Acid; Synapses; Synaptic Transmission

1984
Excitatory amino acid receptors in Xenopus embryo spinal cord and their role in the activation of swimming.
    The Journal of physiology, 1984, Volume: 348

    Topics: Animals; Aspartic Acid; Kainic Acid; Manganese; Membrane Potentials; Motor Activity; Motor Neurons; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord; Swimming; Xenopus

1984