Page last updated: 2024-08-23

quisqualic acid and gamma-glutamylaminomethylsulfonic acid

quisqualic acid has been researched along with gamma-glutamylaminomethylsulfonic acid in 11 studies

Research

Studies (11)

TimeframeStudies, this research(%)All Research%
pre-19904 (36.36)18.7374
1990's6 (54.55)18.2507
2000's1 (9.09)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Di Loreto, S; Florio, T; Scarnati, E1
Raigorodsky, G; Urca, G2
Urca, G; Urca, R1
Krebs, JC; Wirtshafter, D1
Balázs, R; Hack, N; Jørgensen, OS1
Dye, J; Heiligenberg, W; Kawasaki, M; Keller, CH1
Shreve, PE; Uretsky, NJ1
Boldry, R; Lee, T; Stephens, RL; Uretsky, NJ1
Stephens, DN; Turski, L1

Other Studies

11 other study(ies) available for quisqualic acid and gamma-glutamylaminomethylsulfonic acid

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Evidence that non-NMDA receptors are involved in the excitatory pathway from the pedunculopontine region to nigrostriatal dopaminergic neurons.
    Experimental brain research, 1992, Volume: 89, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; 2-Aminoadipic Acid; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Corpus Striatum; Dopamine; Electric Stimulation; Evoked Potentials; Glutamine; Iontophoresis; Kainic Acid; Kynurenic Acid; Male; N-Methylaspartate; Neurons; Pons; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Substantia Nigra; Synapses

1992
Spinal antinociceptive effects of excitatory amino acid antagonists: quisqualate modulates the action of N-methyl-D-aspartate.
    European journal of pharmacology, 1990, Jun-21, Volume: 182, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Analgesics; Animals; Aspartic Acid; Dipeptides; Electric Stimulation; Glutamine; Kynurenic Acid; Male; Mice; Motor Activity; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Spinal Cord; Vocalization, Animal

1990
Neurotoxic effects of excitatory amino acids in the mouse spinal cord: quisqualate and kainate but not N-methyl-D-aspartate induce permanent neural damage.
    Brain research, 1990, Oct-08, Volume: 529, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Aggression; Animals; Glutamine; Kainic Acid; Male; Mice; Mice, Inbred ICR; Motor Activity; N-Methylaspartate; Neurons; Neurotoxins; Pain; Paralysis; Quisqualic Acid; Spinal Cord

1990
Control of food intake by kainate/quisqualate receptors in the median raphe nucleus.
    Psychopharmacology, 1990, Volume: 101, Issue:1

    Topics: Animals; Drinking; Eating; Glutamine; Injections; Kainic Acid; Male; Norleucine; Oxadiazoles; Piperazines; Quisqualic Acid; Raphe Nuclei; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter

1990
Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture: effect of kainic acid.
    Neuroscience, 1990, Volume: 37, Issue:1

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cell Survival; Cells, Cultured; Cerebellum; Dipeptides; Dizocilpine Maleate; DNA; Electric Stimulation; Glutamine; Ibotenic Acid; Kainic Acid; L-Lactate Dehydrogenase; N-Methylaspartate; Potassium; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface

1990
Different classes of glutamate receptors mediate distinct behaviors in a single brainstem nucleus.
    Proceedings of the National Academy of Sciences of the United States of America, 1989, Volume: 86, Issue:22

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Aspartic Acid; Avoidance Learning; Brain Stem; Electric Fish; Electric Organ; Glutamates; Glutamic Acid; Glutamine; Kainic Acid; N-Methylaspartate; Oxadiazoles; Pipecolic Acids; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter

1989
Role of quisqualic acid receptors in the hypermotility response produced by the injection of AMPA into the nucleus accumbens.
    Pharmacology, biochemistry, and behavior, 1988, Volume: 30, Issue:2

    Topics: 2-Aminoadipic Acid; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Glutamates; Glutamine; Ibotenic Acid; Injections; Kainic Acid; Locomotion; Male; N-Methylaspartate; Nucleus Accumbens; Oxadiazoles; Oxazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Drug

1988
Behavioral classification of excitatory amino acid receptors in mouse spinal cord.
    European journal of pharmacology, 1988, Aug-24, Volume: 153, Issue:2-3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Behavior, Animal; Glutamates; Glutamic Acid; Glutamine; Kainic Acid; Male; Mice; Mice, Inbred ICR; N-Methylaspartate; Oxadiazoles; Quisqualic Acid; Receptors, Amino Acid; Receptors, Cell Surface; Spinal Cord; Valine

1988
Activation of excitatory amino acid receptors may mediate the folate-induced stimulation of locomotor activity after bilateral injection into the rat nucleus accumbens.
    The Journal of pharmacology and experimental therapeutics, 1986, Volume: 239, Issue:3

    Topics: 2-Aminoadipic Acid; Acetylcholine; Animals; Corpus Striatum; Diaminopimelic Acid; Folic Acid; Formyltetrahydrofolates; Glutamates; Glutamine; Kainic Acid; Male; Mathematics; Mice; Motor Activity; Nucleus Accumbens; Oxadiazoles; Pterins; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Septal Nuclei; Taurine

1986
Kindling to the benzodiazepine receptor inverse agonist, FG 7142: evidence for involvement of NMDA, but not non-NMDA, glutamatergic receptors.
    Neuropharmacology, 1993, Volume: 32, Issue:10

    Topics: Animals; Carbolines; Female; Glutamine; Injections, Intraventricular; Kainic Acid; Kindling, Neurologic; Mice; Quisqualic Acid; Receptors, GABA-A; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Stereotaxic Techniques

1993