quisqualic acid has been researched along with cyclothiazide in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 4 (57.14) | 18.2507 |
2000's | 2 (28.57) | 29.6817 |
2010's | 1 (14.29) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Mayer, ML; Patneau, DK; Vyklicky, L | 1 |
Tang, CM; Yamada, KA | 1 |
Olney, JW; Price, MT; Yamada, KA; Zorumski, CF | 1 |
Clements, JD; Feltz, A; Sahara, Y; Westbrook, GL | 1 |
Cooke, IM; Duan, S | 1 |
Fan, X; Hess, EJ; Hughes, KE; Jinnah, HA | 1 |
7 other study(ies) available for quisqualic acid and cyclothiazide
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Animals, Newborn; Benzothiadiazines; Cells, Cultured; Dose-Response Relationship, Drug; Drug Synergism; Drug Tolerance; Electrophysiology; Evoked Potentials; Glutamates; Glutamic Acid; Hippocampus; Ibotenic Acid; Kainic Acid; Kinetics; Neurons; Quisqualic Acid; Rats; Rats, Sprague-Dawley | 1993 |
Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzothiadiazines; Cell Line; Cells, Cultured; Diazoxide; Diuretics; Electric Stimulation; Evoked Potentials; Hippocampus; Humans; Kainic Acid; Membrane Potentials; Molecular Structure; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Structure-Activity Relationship; Synapses; Time Factors | 1993 |
A benzodiazepine recognition site associated with the non-NMDA glutamate receptor.
Topics: Animals; Anti-Anxiety Agents; Benzodiazepines; Benzothiadiazines; Binding Sites; Binding, Competitive; Cells, Cultured; Chick Embryo; Electric Conductivity; Excitatory Amino Acid Antagonists; Hippocampus; Kainic Acid; Nerve Degeneration; Neurons; Quisqualic Acid; Rats; Receptors, Glutamate; Retina | 1993 |
Activation kinetics of AMPA receptor channels reveal the number of functional agonist binding sites.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Antihypertensive Agents; Benzothiadiazines; Binding Sites; Cells, Cultured; Enzyme Activation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Hippocampus; Ion Channel Gating; Kainic Acid; Kinetics; Neuromuscular Depolarizing Agents; Neurons; Patch-Clamp Techniques; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, AMPA | 1998 |
Glutamate and GABA activate different receptors and Cl(-) conductances in crab peptide-secretory neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzothiadiazines; Brachyura; Cells, Cultured; Chloride Channels; Chlorides; Concanavalin A; gamma-Aminobutyric Acid; Glutamic Acid; Glycine; Kainic Acid; N-Methylaspartate; Neurons; Patch-Clamp Techniques; Quisqualic Acid; Receptors, AMPA; Receptors, GABA; Receptors, Glutamate | 2000 |
Selective and sustained α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation in cerebellum induces dystonia in mice.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; 4-Aminopyridine; Animals; Benzothiadiazines; Cerebellum; Dose-Response Relationship, Drug; Dystonia; Female; Male; Mice; Mice, Inbred C57BL; Quisqualic Acid; Receptors, AMPA; Receptors, Kainic Acid | 2012 |