quisqualic acid has been researched along with 2-chloro-5-hydroxyphenylglycine in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (75.00) | 29.6817 |
2010's | 1 (25.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Adam, G; Bleuel, Z; Chaboz, S; Ellis, GJ; Faull, RL; Malherbe, P; Messer, J; Metzler, V; Mutel, V; Nilly, A; Richards, JG; Roughley, BS; Schlaeger, EJ | 1 |
Keele, NB; Neugebauer, V; Shinnick-Gallagher, P; Zinebi, F | 1 |
Croucher, MJ; Harris, JR; Jane, DE; Thomas, LS | 1 |
Casoni, A; Clerici, F; Contini, A | 1 |
4 other study(ies) available for quisqualic acid and 2-chloro-5-hydroxyphenylglycine
Article | Year |
---|---|
Characterization of [(3)H]Quisqualate binding to recombinant rat metabotropic glutamate 1a and 5a receptors and to rat and human brain sections.
Topics: Animals; Binding, Competitive; Brain; Calcium; Cells, Cultured; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glycine; Humans; Imidazoles; Indans; Intracellular Fluid; Kainic Acid; Male; Organ Specificity; Quinazolines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Recombinant Proteins; Spinal Cord; Transfection | 2000 |
Epileptogenesis up-regulates metabotropic glutamate receptor activation of sodium-calcium exchange current in the amygdala.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amygdala; Animals; Calcium; Dose-Response Relationship, Drug; Epilepsy; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Kindling, Neurologic; Male; Membrane Potentials; Methoxyhydroxyphenylglycol; Phenylacetates; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Seizures; Sodium; Tetrodotoxin; Up-Regulation | 2000 |
Metabotropic glutamate autoreceptors of the mGlu(5) subtype positively modulate neuronal glutamate release in the rat forebrain in vitro.
Topics: Animals; Aspartic Acid; Autoreceptors; Benzoates; Calcium; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; In Vitro Techniques; Indans; Male; Neurons; Phenylacetates; Prosencephalon; Quisqualic Acid; Rats; Rats, Wistar; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Resorcinols; Tetrodotoxin; Tritium | 2000 |
Molecular dynamic simulation of mGluR5 amino terminal domain: essential dynamics analysis captures the agonist or antagonist behaviour of ligands.
Topics: Amino Acids; Binding Sites; Glutamic Acid; Glycine; Humans; Ligands; Molecular Dynamics Simulation; Phenylacetates; Principal Component Analysis; Protein Binding; Protein Structure, Secondary; Protein Structure, Tertiary; Quisqualic Acid; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Xanthenes | 2013 |