Page last updated: 2024-08-23

quisqualic acid and 2-amino-7-phosphonoheptanoic acid

quisqualic acid has been researched along with 2-amino-7-phosphonoheptanoic acid in 17 studies

Research

Studies (17)

TimeframeStudies, this research(%)All Research%
pre-19906 (35.29)18.7374
1990's10 (58.82)18.2507
2000's1 (5.88)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bramlett, D; Garrison, DT; Kinney, WA; Kowal, DM; Lee, NE; Notvest, RR; Podlesny, EJ; Simmonds, JT; Tasse, RP1
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Pai, KS; Ravindranath, V1
Gale, K; Miller, LP; Murray, TF; Zhong, P1
Denavit-Saubie, M; Foutz, AS; Pierrefiche, O; Schmid, K1
Dougherty, PM; Willis, WD1
Sapru, H; Sundaram, K1
Daw, N; Fox, K; Sato, H1
Clow, DW; Jhamandas, K1
Ogita, K; Yoneda, Y1
Jacquet, YF; Squires, RF1
Jacquet, YF1
Cowburn, RF; Hardy, JA; Roberts, PJ1
Do, KQ; Herrling, PL; Turski, WA1
Kinney, GG; Kocsis, B; Vertes, RP1
Ebner, TJ; Elias, SA; Yae, H1
Kato, N1

Other Studies

17 other study(ies) available for quisqualic acid and 2-amino-7-phosphonoheptanoic acid

ArticleYear
Bioisosteric replacement of the alpha-amino carboxylic acid functionality in 2-amino-5-phosphonopentanoic acid yields unique 3,4-diamino-3-cyclobutene-1,2-dione containing NMDA antagonists.
    Journal of medicinal chemistry, 1992, Dec-11, Volume: 35, Issue:25

    Topics: 2-Amino-5-phosphonovalerate; Animals; Binding Sites; Carboxylic Acids; Male; Mice; N-Methylaspartate; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Stereoisomerism; Structure-Activity Relationship

1992
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Quisqualic acid-induced neurotoxicity is protected by NMDA and non-NMDA receptor antagonists.
    Neuroscience letters, 1992, Aug-31, Volume: 143, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Brain; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Ion Channel Gating; L-Lactate Dehydrogenase; Mice; Potassium; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate

1992
Amino acid neurotransmitter interactions in 'area tempestas': an epileptogenic trigger zone in the deep prepiriform cortex.
    Epilepsy research. Supplement, 1992, Volume: 8

    Topics: 2-Amino-5-phosphonovalerate; Adenosine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Amygdala; Animals; Bicuculline; Brain Mapping; Carbachol; Dominance, Cerebral; Dose-Response Relationship, Drug; Electroencephalography; Epilepsy; Ibotenic Acid; Kainic Acid; Limbic System; Muscimol; Quisqualic Acid; Rats; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate

1992
Endogenous activation of NMDA and non-NMDA glutamate receptors on respiratory neurones in cat medulla.
    Neuropharmacology, 1991, Volume: 30, Issue:5

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Cats; Decerebrate State; Iontophoresis; Medulla Oblongata; Membrane Potentials; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Respiratory Center

1991
Modification of the responses of primate spinothalamic neurons to mechanical stimulation by excitatory amino acids and an N-methyl-D-aspartate antagonist.
    Brain research, 1991, Feb-22, Volume: 542, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Glutamates; Glutamic Acid; Macaca fascicularis; N-Methylaspartate; Neurons; Quisqualic Acid; Spinothalamic Tracts

1991
NMDA receptors in the intermediolateral column of the spinal cord mediate sympathoexcitatory cardiac responses elicited from the ventrolateral medullary pressor area.
    Brain research, 1991, Mar-22, Volume: 544, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Convulsants; Glutamates; Glutamic Acid; Heart Rate; Ibotenic Acid; Kainic Acid; Male; Medulla Oblongata; Microinjections; Myocardial Contraction; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Spinal Cord

1991
The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex.
    Journal of neurophysiology, 1990, Volume: 64, Issue:5

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Cats; Electric Stimulation; Electrodes; Hippocampus; Iontophoresis; Neurons; Photic Stimulation; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Visual Cortex

1990
Characterization of L-glutamate action on the release of endogenous dopamine from the rat caudate-putamen.
    The Journal of pharmacology and experimental therapeutics, 1989, Volume: 248, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Caudate Nucleus; Dopamine; Dose-Response Relationship, Drug; Glutamates; Glutamic Acid; In Vitro Techniques; Magnesium; Male; N-Methylaspartate; Oxadiazoles; Phenazocine; Potassium; Putamen; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter

1989
Solubilization of quisqualate-sensitive [3H]glutamate binding activity from rat retina.
    Journal of neurochemistry, 1989, Volume: 52, Issue:5

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cell Membrane; Glutamates; Glutamic Acid; Kinetics; Male; N-Methylaspartate; Octoxynol; Oxadiazoles; Polyethylene Glycols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; Retina; Solubility

1989
Excitatory amino acids: role in morphine excitation in rat periaqueductal gray.
    Behavioural brain research, 1988, Nov-01, Volume: 31, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Kainic Acid; Male; Morphine; Motor Activity; N-Methylaspartate; Oxadiazoles; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, GABA-A

1988
The NMDA receptor: central role in pain inhibition in rat periaqueductal gray.
    European journal of pharmacology, 1988, Sep-23, Volume: 154, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Analgesia; Animals; Aspartic Acid; Kainic Acid; Male; Morphine; N-Methylaspartate; Oxadiazoles; Pain; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter

1988
Characterisation of Na+-independent L-[3H]glutamate binding sites in human temporal cortex.
    Journal of neurochemistry, 1988, Volume: 50, Issue:6

    Topics: 2-Amino-5-phosphonovalerate; Aged; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Aminobutyrates; Cell Membrane; Chlorides; Glutamates; Glutamic Acid; Humans; Ibotenic Acid; Kainic Acid; Male; Middle Aged; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Sodium; Temporal Lobe

1988
Effects of L-cysteine-sulphinate and L-aspartate, mixed excitatory amino acid agonists, on the membrane potential of cat caudate neurons.
    Brain research, 1987, Jun-30, Volume: 414, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Aspartic Acid; Cats; Caudate Nucleus; Cysteine; Female; Kainic Acid; Male; Membrane Potentials; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Quisqualic Acid

1987
Injections of excitatory amino acid antagonists into the median raphe nucleus produce hippocampal theta rhythm in the urethane-anesthetized rat.
    Brain research, 1994, Aug-15, Volume: 654, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Anesthesia; Animals; Anticonvulsants; Binding, Competitive; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Hippocampus; Injections; Kainic Acid; Male; Quisqualic Acid; Raphe Nuclei; Rats; Rats, Sprague-Dawley; Theta Rhythm; Urethane

1994
Optical imaging of parallel fiber activation in the rat cerebellar cortex: spatial effects of excitatory amino acids.
    Neuroscience, 1993, Volume: 52, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anticonvulsants; Cerebellar Cortex; Electric Stimulation; Evoked Potentials; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Kainic Acid; Kynurenic Acid; Membrane Potentials; N-Methylaspartate; Nerve Fibers; Quisqualic Acid; Rats; Rats, Sprague-Dawley

1993
Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex.
    Proceedings of the National Academy of Sciences of the United States of America, 1993, Apr-15, Volume: 90, Issue:8

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Bicuculline; Cyclopentanes; Evoked Potentials; gamma-Aminobutyric Acid; Guanosine Diphosphate; Heparin; In Vitro Techniques; Kinetics; Neuronal Plasticity; Neurons; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Synapses; Thionucleotides; Visual Cortex

1993