quinoxalines has been researched along with strontium in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (25.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (25.00) | 29.6817 |
2010's | 2 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barker, JL; Gainer, H | 1 |
Good, CH; Lupica, CR | 1 |
Overstreet-Wadiche, L; Rudolph, S; Wadiche, JI | 1 |
Benke, TA; Kirk, ME; Meredith, FL; Rennie, KJ | 1 |
4 other study(ies) available for quinoxalines and strontium
Article | Year |
---|---|
Role of calcium in the seasonal modulation of pacemaker activity in a molluscan neurosecretory cell.
Topics: Action Potentials; Animals; Antiprotozoal Agents; Calcium; Hibernation; Magnesium; Neurosecretory Systems; Quinoxalines; Snails; Strontium; Sulfanilamides | 1973 |
Properties of distinct ventral tegmental area synapses activated via pedunculopontine or ventral tegmental area stimulation in vitro.
Topics: Aconitine; Afferent Pathways; alpha7 Nicotinic Acetylcholine Receptor; Animals; Bicuculline; Dihydro-beta-Erythroidine; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Antagonists; In Vitro Techniques; Nicotine; Nicotinic Antagonists; Patch-Clamp Techniques; Pedunculopontine Tegmental Nucleus; Picrotoxin; Quinoxalines; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Nicotinic; Strontium; Synapses; Synaptic Transmission; Ventral Tegmental Area | 2009 |
Desynchronization of multivesicular release enhances Purkinje cell output.
Topics: Action Potentials; Animals; Animals, Newborn; Aspartic Acid; Biophysical Phenomena; Calcium; Cerebellum; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; In Vitro Techniques; Kynurenic Acid; Linear Models; Mice; Nerve Fibers; Nerve Net; Patch-Clamp Techniques; Purkinje Cells; Quinoxalines; Strontium; Synapses; Time Factors | 2011 |
AMPA receptor-mediated rapid EPSCs in vestibular calyx afferents.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Benzothiadiazines; Calcium Channel Blockers; Calcium Channels, L-Type; Cells, Cultured; Dipeptides; Excitatory Postsynaptic Potentials; Female; Gerbillinae; Hair Cells, Vestibular; Male; Nifedipine; Quinoxalines; Receptors, AMPA; Strontium; Synapses | 2017 |