quinoxalines has been researched along with cycloleucine in 43 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (2.33) | 18.7374 |
1990's | 36 (83.72) | 18.2507 |
2000's | 6 (13.95) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bernardi, G; Calabresi, P; Mercuri, NB | 1 |
Gallagher, JP; Zheng, F | 1 |
de Barry, J; Kudo, Y; Takagi, H; Takimizu, H; Yoshioka, T | 1 |
Hayashi, M; Hirose, E; Ito, I; Kohda, A; Mitsunaga, S; Sugiyama, H; Tanabe, S | 1 |
East, SJ; Garthwaite, J | 1 |
Glaum, SR; Miller, RJ; Rossi, DJ; Slater, NT | 1 |
Baird, JG; Challiss, RA; Nahorski, SR | 1 |
Cotman, CW; Whittemore, ER | 1 |
Jacques-Berg, W; Patel, AJ; Rodriguez, J | 1 |
Bockaert, J; Manzoni, OJ; Prezeau, L | 1 |
Kelso, SR; Pacelli, GJ | 1 |
Courtney, MJ; Lambert, JJ; Nicholls, DG | 1 |
Baraban, JM; Stratton, KR; Worley, PF | 1 |
Bernardi, G; Bonci, A; Calabresi, P; Mercuri, NB; Stratta, F | 1 |
Klitgaard, H; Laudrup, P | 1 |
Herrera, AJ; Osborne, NN | 1 |
Dowling, JE; Grant, GB | 1 |
Beaver, KM; Hawkins, LM; Jane, DE; Roberts, PJ; Sunter, DC; Taylor, PM | 1 |
Collins, GG | 1 |
Glaum, SR; Miller, RJ | 1 |
Dykstra, CL; Gebhart, GF; Meller, ST | 1 |
Bau, A; Faarup, P; Foged, C; Kanstrup, A; Suzdak, PD; Thomsen, C | 1 |
Miles, R; Poncer, JC | 1 |
Gähwiler, BH; Gerber, U; Lüthi, A | 1 |
Birrell, GJ; Marcoux, FW | 1 |
Averill, DB; Tsuchihashi, T | 1 |
De Bernardi, R; Ferro, F; Fontana, G; Gemignani, A; Raiteri, M | 1 |
Benz, A; Mennerick, S; Zorumski, CF | 1 |
Alici, K; Gloveli, T; Heinemann, U; Schmitz, D | 1 |
Fergus, A; Lee, KS | 1 |
Itoh, Y; Kimura, K; Oka, M; Shimidzu, T; Ukai, Y; Yoshikuni, Y | 1 |
Komori, Y; Nabeshima, T; Nikai, T; Senzaki, K; Sugihara, H; Yamada, K | 1 |
Näsström, J; Sequeira, S | 1 |
Linden, R; Martins, RA; Rocha, M | 1 |
Bracci, E; Hack, SP; Jefferys, JG; Vreugdenhil, M | 1 |
Hanania, T; Johnson, KM | 1 |
Blanc, EM; Guiramand, J; Jallageas, M; Recasens, M | 1 |
Nakamura, K; Shirane, M | 1 |
Blaabjerg, M; Bonde, C; Kristensen, BW; Zimmer, J | 1 |
Duvilanski, B; Lasaga, M; Pampillo, M; Seilicovich, A; Theas, S | 1 |
Chiang, AS; Lin, SC; Liu, HP; Pszczolkowski, MA | 1 |
Bulters, DO; Cobb, SR; Davies, CH; Gill, CH; Larkman, PM; Oliver, L | 1 |
Chianca, DA; Dragon, DN; Lin, LH; Talman, WT | 1 |
43 other study(ies) available for quinoxalines and cycloleucine
Article | Year |
---|---|
Activation of quisqualate metabotropic receptors reduces glutamate and GABA-mediated synaptic potentials in the rat striatum.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Corpus Striatum; Cycloleucine; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; In Vitro Techniques; Neurotoxins; Quinoxalines; Rats; Receptors, AMPA; Receptors, Neurotransmitter; Synapses | 1992 |
Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cycloleucine; Evoked Potentials; Glutamates; Ibotenic Acid; In Vitro Techniques; Male; Membrane Potentials; Neurons; Prosencephalon; Quinoxalines; Quisqualic Acid; Rats; Rats, Wistar; Receptors, Glutamate | 1992 |
The expression of presynaptic t-ACPD receptor in rat cerebellum.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Calcium; Cerebellum; Cycloleucine; Dendrites; Evoked Potentials; Fluorescent Dyes; Heterocyclic Compounds, 3-Ring; In Vitro Techniques; Membrane Potentials; Neurotoxins; Purkinje Cells; Quinoxalines; Quisqualic Acid; Rats; Receptors, Metabotropic Glutamate; Receptors, Neurotransmitter; Synapses | 1992 |
3,5-Dihydroxyphenyl-glycine: a potent agonist of metabotropic glutamate receptors.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Alanine; Animals; Cycloleucine; Egtazic Acid; Glycine; Hippocampus; In Vitro Techniques; Male; Oocytes; Potassium Channels; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate; Resorcinols; RNA, Messenger; Xenopus | 1992 |
Actions of a metabotropic glutamate receptor agonist in immature and adult rat cerebellum.
Topics: Age Factors; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cerebellum; Cycloleucine; Dose-Response Relationship, Drug; Electrophysiology; Excitatory Amino Acid Antagonists; Ibotenic Acid; In Vitro Techniques; Purkinje Cells; Quinoxalines; Rats; Receptors, Glutamate | 1992 |
Role of metabotropic glutamate (ACPD) receptors at the parallel fiber-Purkinje cell synapse.
Topics: Afferent Pathways; Animals; Cerebellum; Cycloleucine; Electric Stimulation; Evoked Potentials; Female; Glutamates; In Vitro Techniques; Male; Membrane Potentials; Nerve Fibers; Neurotoxins; Purkinje Cells; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Synapses; Tetrodotoxin | 1992 |
Role for ionotropic and metabotropic receptors in quisqualate-stimulated inositol polyphosphate accumulation in rat cerebral cortex.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cerebral Cortex; Cycloleucine; Ibotenic Acid; In Vitro Techniques; Inositol Phosphates; Quinoxalines; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Neurotransmitter | 1991 |
Agonists selective for phosphoinositide-coupled receptors sensitize neurons to depolarization by L-2-amino-4-phosphonobutanoic acid (L-AP4).
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aminobutyrates; Animals; Carbachol; Cerebral Cortex; Cycloleucine; Hippocampus; Ibotenic Acid; In Vitro Techniques; Male; Neuromuscular Depolarizing Agents; Neurons; Norepinephrine; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Cell Surface; Receptors, Cytoplasmic and Nuclear | 1991 |
Differential regulation of cerebellar granule neurons by two types of quisqualate receptors.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Calcium Channels; Cerebellar Cortex; Cycloleucine; Diltiazem; Glutaminase; Ibotenic Acid; Ion Channel Gating; L-Lactate Dehydrogenase; Neuronal Plasticity; Neurons; Nifedipine; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Neurotransmitter | 1991 |
beta-N-methylamino-L-alanine is a low-affinity agonist of metabotropic glutamate receptors.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids, Diamino; Animals; Carbachol; Cells, Cultured; Corpus Striatum; Cyanobacteria Toxins; Cycloleucine; Dizocilpine Maleate; Embryo, Mammalian; Glutamates; Inositol; Inositol Phosphates; Kinetics; Mice; Neurons; Neurotoxins; Phorbol 12,13-Dibutyrate; Quinoxalines; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1991 |
Trans-ACPD reduces multiple components of synaptic transmission in the rat hippocampus.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cycloleucine; Electrophysiology; Hippocampus; In Vitro Techniques; Male; Quinoxalines; Rats; Receptors, Amino Acid; Receptors, Cell Surface; Synapses; Synaptic Transmission | 1991 |
The interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebellar granule cells.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Calcium Channels; Cell Membrane; Cells, Cultured; Cerebellum; Cycloleucine; Dizocilpine Maleate; Ibotenic Acid; Kainic Acid; Magnesium; Membrane Potentials; Neurons; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1990 |
Excitation of hippocampal neurons by stimulation of glutamate Qp receptors.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cycloleucine; Electric Stimulation; Electrophysiology; Hippocampus; Ibotenic Acid; In Vitro Techniques; Male; Neurons; Oxadiazoles; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Receptors, Muscarinic; Receptors, Neurotransmitter | 1989 |
Activation of metabotropic glutamate receptors induces an inward current in rat dopamine mesencephalic neurons.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cycloleucine; Dopamine; Electrophysiology; Female; Glycine; Male; Neurons; Potassium; Quinoxalines; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Stimulation, Chemical; Tetrodotoxin | 1993 |
Metabotropic and ionotropic excitatory amino acid receptor agonists induce different behavioral effects in mice.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Behavior, Animal; Cycloleucine; Dizocilpine Maleate; Dose-Response Relationship, Drug; Ibotenic Acid; Kainic Acid; Male; Mice; N-Methylaspartate; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Seizures | 1993 |
The effect of experimental ischaemia and excitatory amino acid agonists on the GABA and serotonin immunoreactivities in the rabbit retina.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Cycloleucine; Dextromethorphan; Eye Proteins; gamma-Aminobutyric Acid; Glucose; Glutamates; Glutamic Acid; Intraocular Pressure; Ischemia; Kainic Acid; Kynurenic Acid; Memantine; N-Methylaspartate; Oxygen; Potassium Cyanide; Quinoxalines; Rabbits; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Retina; Retinal Vessels; Serotonin | 1994 |
A glutamate-activated chloride current in cone-driven ON bipolar cells of the white perch retina.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Chloride Channels; Chlorides; Cycloleucine; Dendrites; Glutamic Acid; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Kynurenic Acid; Membrane Potentials; N-Methylaspartate; Neurotoxins; Patch-Clamp Techniques; Perches; Picrotoxin; Quinoxalines; Quisqualic Acid; Receptors, Metabotropic Glutamate; Retina; Retinal Cone Photoreceptor Cells; Strychnine | 1995 |
Binding of the new radioligand (S)-[3H]AMPA to rat brain synaptic membranes: effects of a series of structural analogues of the non-NMDA receptor agonist willardiine.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain; Cycloleucine; Male; Pyrimidinones; Quinoxalines; Radioligand Assay; Rats; Rats, Wistar; Receptors, AMPA; Stereoisomerism; Synaptic Membranes; Tritium; Uracil | 1995 |
Actions of agonists of metabotropic glutamate receptors on synaptic transmission and transmitter release in the olfactory cortex.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Cycloleucine; Ibotenic Acid; In Vitro Techniques; Male; Mice; Neurotransmitter Agents; Olfactory Bulb; Potassium; Quinoxalines; Receptors, Glutamate; Synapses; Synaptic Transmission | 1993 |
Activation of metabotropic glutamate receptors produces reciprocal regulation of ionotropic glutamate and GABA responses in the nucleus of the tractus solitarius of the rat.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cycloleucine; Electrophysiology; Female; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Ibotenic Acid; Male; Medulla Oblongata; Muscimol; Neurons; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Synapses | 1993 |
Acute mechanical hyperalgesia is produced by coactivation of AMPA and metabotropic glutamate receptors.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cycloleucine; Hot Temperature; Ibotenic Acid; Male; N-Methylaspartate; Neurotoxins; Pain; Pain Measurement; Pain Threshold; Physical Stimulation; Quinoxalines; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Spinal Cord | 1993 |
Effects of bromohomoibotenate on metabotropic glutamate receptors.
Topics: Aminobutyrates; Animals; Binding, Competitive; Cell Line; Cerebral Cortex; Cricetinae; Cyclic AMP; Cycloleucine; Dose-Response Relationship, Drug; Glutamic Acid; Hippocampus; Hydrolysis; Ibotenic Acid; Kidney; Membranes; Phosphatidylinositols; Quinoxalines; Receptors, AMPA; Receptors, Metabotropic Glutamate; Stereoisomerism | 1994 |
Metabotropic glutamate receptors mediate a post-tetanic excitation of guinea-pig hippocampal inhibitory neurones.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Cycloleucine; Electric Stimulation; Guinea Pigs; Hippocampus; In Vitro Techniques; Membrane Potentials; Neurons, Afferent; Picrotoxin; Potassium Chloride; Pyramidal Cells; Quinoxalines; Receptors, Metabotropic Glutamate; Synapses | 1993 |
Inhibition of a slow synaptic response by a metabotropic glutamate receptor antagonist in hippocampal CA3 pyramidal cells.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzoates; Bicuculline; Cycloleucine; Evoked Potentials; Glycine; Hippocampus; In Vitro Techniques; Nerve Fibers; Neurotoxins; Pyramidal Cells; Quinoxalines; Rats; Receptors, Glutamate; Synapses | 1993 |
Excitatory amino acid receptor-stimulated phosphoinositide turnover in primary cerebrocortical cultures.
Topics: Animals; Calcium; Cells, Cultured; Cerebral Cortex; Cycloleucine; Female; GTP-Binding Proteins; Kynurenic Acid; Pertussis Toxin; Phosphatidylinositols; Piperazines; Pregnancy; Quinoxalines; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Virulence Factors, Bordetella | 1993 |
Metabotropic glutamate receptors in the ventrolateral medulla of rats.
Topics: 2-Amino-5-phosphonovalerate; Alanine; Amino Acids; Animals; Blood Pressure; Cycloleucine; Dose-Response Relationship, Drug; Drug Combinations; Male; Medulla Oblongata; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Stimulation, Chemical | 1993 |
Characterization of the glutamate receptors mediating release of somatostatin from cultured hippocampal neurons.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anti-Anxiety Agents; Benzodiazepines; Calcium; Cells, Cultured; Cycloleucine; Dizocilpine Maleate; Drug Synergism; Glutamic Acid; Hippocampus; Kainic Acid; N-Methylaspartate; Pyramidal Cells; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Somatostatin; Tetrodotoxin | 1996 |
Components of glial responses to exogenous and synaptic glutamate in rat hippocampal microcultures.
Topics: Animals; Anti-Anxiety Agents; Benzodiazepines; Cells, Cultured; Cycloleucine; Electrophysiology; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Microglia; Neurons; Neurotoxins; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Synapses; Tacrine | 1996 |
Effects of glutamate receptor agonists and antagonists on Ca2+ uptake in rat hippocampal slices lesioned by glucose deprivation or by kainate.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cycloleucine; Electrophysiology; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; Glucose; Hippocampus; Kainic Acid; Male; N-Methylaspartate; Neuroprotective Agents; Organ Culture Techniques; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate; Synaptic Transmission | 1997 |
Regulation of cerebral microvessels by glutamatergic mechanisms.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cerebral Cortex; Cerebrovascular Circulation; Cycloleucine; Electric Stimulation; Evoked Potentials; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Male; Microcirculation; N-Methylaspartate; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Synapses; Vasoconstriction; Vasodilation | 1997 |
Involvement of metabotropic glutamate receptors in Gi- and Gs-dependent modulation of adenylate cyclase activity induced by a novel cognition enhancer NS-105 in rat brain.
Topics: Adenylate Cyclase Toxin; Adenylyl Cyclases; Adrenergic alpha-Agonists; Alanine; Animals; Baclofen; Brimonidine Tartrate; Cell Membrane; Cerebral Cortex; Cholera Toxin; Cognition; Colforsin; Cyclic AMP; Cycloleucine; Excitatory Amino Acid Antagonists; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); In Vitro Techniques; Isoproterenol; Kinetics; Male; Manganese; Pertussis Toxin; Piperidines; Proline; Quinoxalines; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Receptors, Neurotransmitter; Virulence Factors, Bordetella; Yohimbine | 1997 |
Changes in extracellular nitrite and nitrate levels after inhibition of glial metabolism with fluorocitrate.
Topics: Aconitate Hydratase; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Behavior, Animal; Benzoates; Cerebellum; Citrates; Citric Acid Cycle; Cycloleucine; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Extracellular Space; Glycine; Male; N-Methylaspartate; Neuroglia; Neuroprotective Agents; NG-Nitroarginine Methyl Ester; Nitrates; Nitric Oxide; Nitrites; Nitroarginine; Quinoxalines; Rats; Rats, Wistar; Substrate Specificity | 1997 |
Low-affinity kainate receptors and long-lasting depression of NMDA-receptor-mediated currents in rat superficial dorsal horn.
Topics: Action Potentials; Animals; Calcium; Cycloleucine; Electrophysiology; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Ganglia, Spinal; Glutamic Acid; Indoles; Ion Channel Gating; Kainic Acid; Male; N-Methylaspartate; Neurons, Afferent; Neuroprotective Agents; Oximes; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Spinal Nerve Roots; Synaptic Transmission | 1998 |
Activation of NMDA receptors protects against glutamate neurotoxicity in the retina: evidence for the involvement of neurotrophins.
Topics: 2-Amino-5-phosphonovalerate; Animals; Apoptosis; Brain-Derived Neurotrophic Factor; Cycloleucine; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Kainic Acid; N-Methylaspartate; Nerve Growth Factors; Neuroprotective Agents; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptor Protein-Tyrosine Kinases; Receptor, Ciliary Neurotrophic Factor; Receptors, N-Methyl-D-Aspartate; Receptors, Nerve Growth Factor; Retina | 1999 |
On the synchronizing mechanisms of tetanically induced hippocampal oscillations.
Topics: Action Potentials; Animals; Bicuculline; Cycloleucine; Electric Stimulation; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Male; Models, Neurological; Oscillometry; Pyramidal Cells; Quinoxalines; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, GABA-A; Synapses; Synaptic Transmission | 1999 |
Regulation of NMDA-stimulated [14C]GABA and [3H]acetylcholine release by striatal glutamate and dopamine receptors.
Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Acetylcholine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzoates; Carbon Radioisotopes; Corpus Striatum; Cycloleucine; Dopamine Agonists; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Glycine; Kainic Acid; Male; N-Methylaspartate; Proline; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Dopamine; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Tritium | 1999 |
Potentiation of glutamatergic agonist-induced inositol phosphate formation by basic fibroblast growth factor is related to developmental features in hippocampal cultures: neuronal survival and glial cell proliferation.
Topics: Animals; Antimetabolites, Antineoplastic; Benzoates; Cell Division; Cell Survival; Cells, Cultured; Cellular Senescence; Cycloleucine; Cytarabine; Epidermal Growth Factor; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Fetus; Fibroblast Growth Factor 2; Glutamic Acid; Glycine; Hippocampus; Inositol Phosphates; Neuroglia; Neurons; Neuroprotective Agents; Quinoxalines; Quisqualic Acid; Rats; Receptors, AMPA; Receptors, Kainic Acid; Type C Phospholipases | 1999 |
Group II metabotropic glutamate receptors are a common target of N-anisoyl-GABA and 1S,3R-ACPD in enhancing ACh release in the prefrontal cortex of freely moving SHRSP.
Topics: Acetylcholine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids, Dicarboxylic; Animals; Anisoles; Benzoates; Cycloleucine; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Glycine; Hippocampus; Indans; Male; Microdialysis; Perfusion; Prefrontal Cortex; Quinoxalines; Rats; Rats, Inbred SHR; Receptors, AMPA; Receptors, Metabotropic Glutamate; Thalamic Nuclei; Wakefulness | 2000 |
The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures.
Topics: Animals; Coloring Agents; Cycloleucine; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Hippocampus; Immunohistochemistry; In Vitro Techniques; Microtubule-Associated Proteins; N-Methylaspartate; Nerve Tissue Proteins; Neurotoxins; Propidium; Quinoxalines; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Staining and Labeling | 2001 |
Effect of ionotropic and metabotropic glutamate agonists and D-aspartate on prolactin release from anterior pituitary cells.
Topics: Animals; Aspartic Acid; Cells, Cultured; Cyclic AMP; Cycloleucine; Excitatory Amino Acid Agonists; Female; Pituitary Gland, Anterior; Prolactin; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate; Receptors, Metabotropic Glutamate | 2002 |
Ionotropic glutamate receptors mediate juvenile hormone synthesis in the cockroach, Diploptera punctata.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Cockroaches; Corpora Allata; Cycloleucine; Cytosol; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamates; Juvenile Hormones; Kainic Acid; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Receptors, Metabotropic Glutamate | 2002 |
Activation of Ih is necessary for patterning of mGluR and mAChR induced network activity in the hippocampal CA3 region.
Topics: Animals; Carbachol; Cardiotonic Agents; Cholinergic Agonists; Cycloleucine; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; Hippocampus; In Vitro Techniques; Nerve Net; Patch-Clamp Techniques; Pyramidal Cells; Pyrimidines; Quinoxalines; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Receptors, Muscarinic; Synaptic Transmission; Theta Rhythm | 2003 |
NMDA receptors in nucleus tractus solitarii are linked to soluble guanylate cyclase.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminoquinolines; Animals; Baroreflex; Biotransformation; Blood Pressure; Cycloleucine; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Guanylate Cyclase; In Vitro Techniques; Male; Microinjections; N-Methylaspartate; Nitric Oxide; Oxadiazoles; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Solitary Nucleus; Stereotaxic Techniques | 2004 |