Page last updated: 2024-08-17

quinoxalines and adenosine-3',5'-cyclic phosphorothioate

quinoxalines has been researched along with adenosine-3',5'-cyclic phosphorothioate in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (14.29)18.2507
2000's5 (71.43)29.6817
2010's1 (14.29)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Gean, PW; Huang, CC; Tsai, JJ1
Dick, JM; Lefebvre, RA1
Al-Hassani, M; Gupta, MP; Hart, CM; Natarajan, V; Ober, MD; Patterson, C1
Capogna, M1
Ivenshitz, M; Segal, M1
Bonci, A; Borgland, SL; Fields, HL; Sarti, F; Taha, SA1
Crawford, DC; Jiang, X; Mennerick, S; Taylor, A1

Other Studies

7 other study(ies) available for quinoxalines and adenosine-3',5'-cyclic phosphorothioate

ArticleYear
Enhancement of NMDA receptor-mediated synaptic potential by isoproterenol is blocked by Rp-adenosine 3',5'-cyclic monophosphothioate.
    Neuroscience letters, 1993, Oct-29, Volume: 161, Issue:2

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amygdala; Animals; Colforsin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Evoked Potentials; In Vitro Techniques; Isoproterenol; Neurons; Picrotoxin; Quinoxalines; Rats; Receptors, N-Methyl-D-Aspartate; Synapses; Thionucleotides

1993
Interplay between nitric oxide and vasoactive intestinal polypeptide in the pig gastric fundus smooth muscle.
    European journal of pharmacology, 2000, Jun-02, Volume: 397, Issue:2-3

    Topics: Adenine; Adenylyl Cyclase Inhibitors; Amidines; Animals; Arginine; Benzylamines; Carbazoles; Colforsin; Cyclic AMP; Dexamethasone; Dose-Response Relationship, Drug; Enzyme Inhibitors; Gastric Fundus; In Vitro Techniques; Indoles; Isoquinolines; Muscle Relaxation; Muscle, Smooth; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Oxadiazoles; Protein Kinase Inhibitors; Pyrroles; Quinoxalines; Sulfonamides; Swine; Thionucleotides; Vasoactive Intestinal Peptide

2000
Nitric oxide attenuates H(2)O(2)-induced endothelial barrier dysfunction: mechanisms of protection.
    American journal of physiology. Lung cellular and molecular physiology, 2001, Volume: 280, Issue:1

    Topics: 1-Methyl-3-isobutylxanthine; 8-Bromo Cyclic Adenosine Monophosphate; Animals; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP; Endothelium, Vascular; Enzyme Inhibitors; Hydrogen Peroxide; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Oxadiazoles; Oxidants; Penicillamine; Phosphodiesterase Inhibitors; Pulmonary Artery; Quinoxalines; Swine; Thionucleotides

2001
Distinct properties of presynaptic group II and III metabotropic glutamate receptor-mediated inhibition of perforant pathway-CA1 EPSCs.
    The European journal of neuroscience, 2004, Volume: 19, Issue:10

    Topics: Amino Acids; Aminobutyrates; Animals; Bridged Bicyclo Compounds; Calcium Channel Blockers; Cyclic AMP; Dose-Response Relationship, Drug; Dose-Response Relationship, Radiation; Drug Interactions; Elapid Venoms; Electric Stimulation; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Hippocampus; In Vitro Techniques; Membrane Potentials; Neural Inhibition; omega-Conotoxin GVIA; Perforant Pathway; Phosphinic Acids; Propanolamines; Quinoxalines; Rats; Receptors, Metabotropic Glutamate; Statistics, Nonparametric; Synaptic Transmission; Thionucleotides; Time Factors; Xanthenes

2004
Simultaneous NMDA-dependent long-term potentiation of EPSCs and long-term depression of IPSCs in cultured rat hippocampal neurons.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006, Jan-25, Volume: 26, Issue:4

    Topics: 2-Amino-5-phosphonovalerate; Animals; Baclofen; Calcium; Cells, Cultured; Colforsin; Cyclic AMP; Evoked Potentials; Hippocampus; Long-Term Potentiation; Long-Term Synaptic Depression; Neuronal Plasticity; Neurons; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Patch-Clamp Techniques; Phosphinic Acids; Propanolamines; Quinoxalines; Rats; Receptors, GABA-B; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission; Tetrodotoxin; Thionucleotides; Time Factors

2006
Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine.
    Neuron, 2006, Feb-16, Volume: 49, Issue:4

    Topics: Analysis of Variance; Anesthetics, Local; Animals; Animals, Newborn; Behavior, Animal; Benzoxazoles; Calcium Channel Blockers; Cocaine; Cyclic AMP; Dopamine; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Immunohistochemistry; In Vitro Techniques; Intracellular Signaling Peptides and Proteins; Lysine; Male; Motor Activity; N-Methylaspartate; Naphthyridines; Neuronal Plasticity; Neurons; Neuropeptides; Orexins; Patch-Clamp Techniques; Protein Kinase C; Quinoxalines; Rats; Rats, Sprague-Dawley; Synapses; Thionucleotides; Time Factors; Tyrosine 3-Monooxygenase; Urea; Ventral Tegmental Area

2006
Astrocyte-derived thrombospondins mediate the development of hippocampal presynaptic plasticity in vitro.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, Sep-19, Volume: 32, Issue:38

    Topics: Adenosine; Amines; Animals; Animals, Newborn; Astrocytes; Biophysics; Coculture Techniques; CREB-Binding Protein; Culture Media, Conditioned; Cyclic AMP; Cyclohexanecarboxylic Acids; Dynamin I; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; Gabapentin; gamma-Aminobutyric Acid; Hippocampus; Male; N-Methylaspartate; Nerve Tissue Proteins; Neuronal Plasticity; Organ Culture Techniques; Patch-Clamp Techniques; Phosphorylation; Potassium Chloride; Presynaptic Terminals; Protein Kinase Inhibitors; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Statistics, Nonparametric; Synapses; Thionucleotides; Thrombospondins; Valine; Vesicular Glutamate Transport Protein 1

2012