Page last updated: 2024-08-17

quinoxalines and 1-aminoindan-1,5-dicarboxylic acid

quinoxalines has been researched along with 1-aminoindan-1,5-dicarboxylic acid in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (33.33)18.2507
2000's2 (66.67)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Cozzi, A; Leonardi, P; Meli, E; Moroni, F; Pellegrini-Giampietro, DE; Pellicciari, R; Peruginelli, F1
Nakamura, K; Shirane, M1
Abraham, KE; Brewer, KL; McGinty, JF1

Other Studies

3 other study(ies) available for quinoxalines and 1-aminoindan-1,5-dicarboxylic acid

ArticleYear
1-Aminoindan-1,5-dicarboxylic acid and (S)-(+)-2-(3'-carboxybicyclo[1.1.1] pentyl)-glycine, two mGlu1 receptor-preferring antagonists, reduce neuronal death in in vitro and in vivo models of cerebral ischaemia.
    The European journal of neuroscience, 1999, Volume: 11, Issue:10

    Topics: Animals; Animals, Newborn; Astrocytes; Benzoates; Bridged Bicyclo Compounds; Cell Death; Cells, Cultured; Cerebral Cortex; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Gerbillinae; Glycine; Indans; Ischemic Attack, Transient; Mice; Neuroprotective Agents; Neurotoxins; Organ Culture Techniques; Pyramidal Cells; Quinoxalines; Receptors, Metabotropic Glutamate; Resorcinols

1999
Group II metabotropic glutamate receptors are a common target of N-anisoyl-GABA and 1S,3R-ACPD in enhancing ACh release in the prefrontal cortex of freely moving SHRSP.
    Neuropharmacology, 2000, Mar-03, Volume: 39, Issue:5

    Topics: Acetylcholine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids, Dicarboxylic; Animals; Anisoles; Benzoates; Cycloleucine; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Glycine; Hippocampus; Indans; Male; Microdialysis; Perfusion; Prefrontal Cortex; Quinoxalines; Rats; Rats, Inbred SHR; Receptors, AMPA; Receptors, Metabotropic Glutamate; Thalamic Nuclei; Wakefulness

2000
The role of kainic acid/AMPA and metabotropic glutamate receptors in the regulation of opioid mRNA expression and the onset of pain-related behavior following excitotoxic spinal cord injury.
    Neuroscience, 2001, Volume: 104, Issue:3

    Topics: Animals; Behavior, Animal; Dynorphins; Enkephalins; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Grooming; Indans; Male; Nerve Degeneration; Neurons; Neurotoxins; Opioid Peptides; Pain; Pain Measurement; Protein Precursors; Quinoxalines; Rats; Rats, Long-Evans; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, Metabotropic Glutamate; RNA, Messenger; Spinal Cord; Spinal Cord Injuries

2001