quinolinic acid and calpain

quinolinic acid has been researched along with calpain in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (66.67)29.6817
2010's1 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bantubungi, K; Blum, D; Brotchi, J; Brouillet, E; Chtarto, A; Déglon, N; Galas, MC; Greco, A; Jacquard, C; Levivier, M; Minghetti, L; Pintor, A; Popoli, P; Schiffmann, SN; Tai, K; Tenenbaum, L1
Bizat, N; Bonvento, G; Brouillet, E; Cancela, JM; Cosker, F; Escartin, C; Hantraye, P; Jacquard, C; Trioulier, Y1
Chiang, IT; Chiou, TW; Harn, HJ; Hsieh, DK; Lin, SY; Lin, SZ; Liu, JW; Rajamani, K; Wu, CH; You, DH1

Other Studies

3 other study(ies) available for quinolinic acid and calpain

ArticleYear
Minocycline in phenotypic models of Huntington's disease.
    Neurobiology of disease, 2005, Volume: 18, Issue:1

    Topics: Animals; Calpain; Caspases; Cell Death; Cells, Cultured; Corpus Striatum; Disease Models, Animal; Dose-Response Relationship, Drug; Encephalitis; Glutamic Acid; Huntingtin Protein; Huntington Disease; Male; Minocycline; Nerve Degeneration; Nerve Tissue Proteins; Neuroprotective Agents; Nitro Compounds; Nuclear Proteins; Phenotype; Propionates; Quinolinic Acid; Rats; Rats, Inbred Lew; Rats, Wistar; Staurosporine

2005
Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2006, Volume: 20, Issue:7

    Topics: Animals; Calcium Signaling; Calpain; Cells, Cultured; Corpus Striatum; Male; Mitochondria; Neurons; Nitro Compounds; Propionates; Quinolinic Acid; Rats; Rats, Inbred Lew; Receptors, N-Methyl-D-Aspartate

2006
n-Butylidenephthalide exhibits protection against neurotoxicity through regulation of tryptophan 2, 3 dioxygenase in spinocerebellar ataxia type 3.
    Neuropharmacology, 2017, 05-01, Volume: 117

    Topics: Animals; Ataxin-3; Calcium; Calpain; Cerebellum; Disease Models, Animal; HEK293 Cells; Humans; Machado-Joseph Disease; Mice, Inbred C57BL; Mice, Transgenic; Motor Activity; Neuroprotective Agents; Phthalic Anhydrides; Quinolinic Acid; Ryanodine Receptor Calcium Release Channel; Tryptophan; Tryptophan Oxygenase

2017