quinoline-3-carboxamide and paquinimod

quinoline-3-carboxamide has been researched along with paquinimod* in 2 studies

Trials

1 trial(s) available for quinoline-3-carboxamide and paquinimod

ArticleYear
Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in
    Arthritis and rheumatism, 2012, Volume: 64, Issue:5

    To assess the efficacy of paquinimod, a new immunomodulatory small molecule, in a murine lupus model, and to evaluate its pharmacokinetics and tolerability in systemic lupus erythematosus (SLE) patients at doses predicted to be efficacious and safe and determine the maximum tolerated dose.. The efficacy of paquinimod was studied in lupus-prone MRL-lpr/lpr mice and compared with that of established SLE treatments. Dose-response data and pharmacokinetic data were used to calculate effective and safe clinical doses of paquinimod. The pharmacokinetics and tolerability of paquinimod were evaluated in a phase Ib double-blind, placebo controlled, dose-ranging study in which cohorts of SLE patients received daily oral treatment for 12 weeks.. Paquinimod treatment resulted in disease inhibition in MRL-lpr/lpr mice, comparable to that obtained with prednisolone and mycophenolate mofetil; prominent effects on disease manifestations and serologic markers and a steroid-sparing effect were observed. In patients with SLE, the pharmacokinetic properties of paquinimod were linear and well suitable for once-daily oral treatment. The majority of the adverse events (AEs) were mild or moderate, and transient. The most frequent AEs were arthralgia and myalgia, reported with the highest dose levels of paquinimod (4.5 mg/day and 6.0 mg/day). At the 4.5 mg/day dose level and higher, some AEs of severe intensity and serious adverse events were reported.. Paquinimod effectively inhibited disease and had a steroid-sparing effect in experimental lupus. Results from preclinical models together with pharmacokinetic data were successfully translated into a safe clinical dose range, and doses of up to 3.0 mg/day were well tolerated in the SLE patients. Taken together, the promising combined data from a murine model and human SLE support the future clinical development of paquinimod.

    Topics: Adult; Aged; Animals; Disease Models, Animal; Double-Blind Method; Female; Humans; Immunosuppressive Agents; Kidney; Lupus Erythematosus, Systemic; Male; Mice; Mice, Inbred MRL lpr; Middle Aged; Mycophenolic Acid; Prednisolone; Quinolines; Severity of Illness Index; Treatment Outcome; Young Adult

2012

Other Studies

1 other study(ies) available for quinoline-3-carboxamide and paquinimod

ArticleYear
Amelioration of experimental autoimmune encephalomyelitis by the quinoline-3-carboxamide paquinimod: reduced priming of proinflammatory effector CD4(+) T cells.
    The American journal of pathology, 2013, Volume: 182, Issue:5

    Quinoline-3-carboxamide compounds (Q compounds) have demonstrated efficacy in treating autoimmune disease in both humans and mice. However, the mode of action of these compounds is poorly understood. Here, we show that preventive treatment with the Q compound paquinimod (ABR-215757) during the first 5 days after induction of experimental autoimmune encephalomyelitis is sufficient to significantly ameliorate disease symptoms. Parallel cell-depletion experiments demonstrated that Ly6C(hi) inflammatory monocytes play an essential role in this phase. The paquinimod-induced amelioration correlated with reduced priming of antigen-specific CD4(+) T cells and reduced frequency of IFN-γ- and IL-17-producing cells in draining lymph nodes. Importantly, the treatment did not inhibit T-cell division per se. In mice with established experimental autoimmune encephalomyelitis, the numbers of Ly6C(hi) CD115(+) inflammatory monocytes and CD11b(+)CD11c(+) dendritic cells (DCs) were reduced in spleen, but not in bone marrow or draining lymph nodes of treated mice. Inflammatory monocyte-derived DCs and CD4(+) T cells were also reduced in the brain. In contrast, there was no decrease in DC subsets previously shown to be critical for effector CD4(+) T-cell development in lymph nodes. Taken together, these data indicate that preventive treatment with paquinimod ameliorates experimental autoimmune encephalomyelitis by reducing effector T-cell priming and, on prolonged treatment, displays a selective effect by decreasing distinct subpopulations of splenic CD11b(+) myeloid cells.

    Topics: Animals; Antigen-Presenting Cells; CD11b Antigen; CD4-Positive T-Lymphocytes; Cell Proliferation; Central Nervous System; Cross-Priming; Dendritic Cells; Encephalomyelitis, Autoimmune, Experimental; Immunologic Memory; Inflammation; Interferon-gamma; Interleukin-17; Mice; Mice, Inbred C57BL; Quinolines; Spleen

2013