Page last updated: 2024-08-17

quinidine and arginine

quinidine has been researched along with arginine in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19901 (11.11)18.7374
1990's4 (44.44)18.2507
2000's0 (0.00)29.6817
2010's4 (44.44)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Nezu, J; Oku, A; Sai, Y; Sakamoto, K; Shimane, M; Tamai, I; Tsuji, A; Yabuuchi, H1
Nezu, JI; Ohashi, R; Oku, A; Sai, Y; Shimane, M; Tamai, I; Tsuji, A; Yabuuchi, H1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Bolker, HI1
Banitt, P; Creager, MA; Lipson, DE; Rongen, GA; Smits, P; Williams, SB1
Hill, BT; Hosking, LK1

Reviews

1 review(s) available for quinidine and arginine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

8 other study(ies) available for quinidine and arginine

ArticleYear
Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 289, Issue:2

    Topics: Animals; Biological Transport, Active; Carrier Proteins; Cell Line; Gene Expression; Humans; Hydrogen-Ion Concentration; Membrane Potentials; Membrane Proteins; Membrane Transport Proteins; Oocytes; Organic Cation Transport Proteins; Quinidine; RNA, Messenger; Symporters; Tetraethylammonium Compounds; Xenopus laevis

1999
Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 291, Issue:2

    Topics: Biological Transport, Active; Carnitine; Carrier Proteins; Cations; Cells, Cultured; Dose-Response Relationship, Drug; Embryo, Mammalian; Humans; Hydrogen-Ion Concentration; Kidney; Membrane Proteins; Organic Cation Transport Proteins; Sodium; Solute Carrier Family 22 Member 5; Stereoisomerism

1999
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Phylogenetic relationships of echinoderms: biochemical evidence.
    Nature, 1967, Mar-04, Volume: 213, Issue:5079

    Topics: Alcohols; Animals; Arginine; Creatine; Echinodermata; Quinidine; Sterols

1967
Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans.
    Circulation, 1995, Oct-15, Volume: 92, Issue:8

    Topics: Adenosine; Arginine; Dose-Response Relationship, Drug; Endothelium, Vascular; Enzyme Inhibitors; Female; Forearm; Humans; Male; Nitric Oxide; Nitric Oxide Synthase; Nitroprusside; omega-N-Methylarginine; Plethysmography; Potassium Channels; Quinidine; Regional Blood Flow; Tolbutamide; Vasodilation; Vasodilator Agents; Verapamil

1995
Differential effectiveness of a range of novel drug-resistance modulators, relative to verapamil, in influencing vinblastine or teniposide cytotoxicity in human lymphoblastoid CCRF-CEM sublines expressing classic or atypical multidrug resistance.
    Cancer chemotherapy and pharmacology, 1994, Volume: 33, Issue:4

    Topics: Cyclosporine; Dihydropyridines; Dose-Response Relationship, Drug; Drug Resistance; Drug Screening Assays, Antitumor; Flunarizine; Humans; Leukemia, T-Cell; Piperidines; Quinidine; Teniposide; Triazines; Tumor Cells, Cultured; Verapamil; Vinblastine

1994