quinidine has been researched along with arginine in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (11.11) | 18.7374 |
1990's | 4 (44.44) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 4 (44.44) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Nezu, J; Oku, A; Sai, Y; Sakamoto, K; Shimane, M; Tamai, I; Tsuji, A; Yabuuchi, H | 1 |
Nezu, JI; Ohashi, R; Oku, A; Sai, Y; Shimane, M; Tamai, I; Tsuji, A; Yabuuchi, H | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Bolker, HI | 1 |
Banitt, P; Creager, MA; Lipson, DE; Rongen, GA; Smits, P; Williams, SB | 1 |
Hill, BT; Hosking, LK | 1 |
1 review(s) available for quinidine and arginine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
8 other study(ies) available for quinidine and arginine
Article | Year |
---|---|
Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations.
Topics: Animals; Biological Transport, Active; Carrier Proteins; Cell Line; Gene Expression; Humans; Hydrogen-Ion Concentration; Membrane Potentials; Membrane Proteins; Membrane Transport Proteins; Oocytes; Organic Cation Transport Proteins; Quinidine; RNA, Messenger; Symporters; Tetraethylammonium Compounds; Xenopus laevis | 1999 |
Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance.
Topics: Biological Transport, Active; Carnitine; Carrier Proteins; Cations; Cells, Cultured; Dose-Response Relationship, Drug; Embryo, Mammalian; Humans; Hydrogen-Ion Concentration; Kidney; Membrane Proteins; Organic Cation Transport Proteins; Sodium; Solute Carrier Family 22 Member 5; Stereoisomerism | 1999 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Phylogenetic relationships of echinoderms: biochemical evidence.
Topics: Alcohols; Animals; Arginine; Creatine; Echinodermata; Quinidine; Sterols | 1967 |
Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans.
Topics: Adenosine; Arginine; Dose-Response Relationship, Drug; Endothelium, Vascular; Enzyme Inhibitors; Female; Forearm; Humans; Male; Nitric Oxide; Nitric Oxide Synthase; Nitroprusside; omega-N-Methylarginine; Plethysmography; Potassium Channels; Quinidine; Regional Blood Flow; Tolbutamide; Vasodilation; Vasodilator Agents; Verapamil | 1995 |
Differential effectiveness of a range of novel drug-resistance modulators, relative to verapamil, in influencing vinblastine or teniposide cytotoxicity in human lymphoblastoid CCRF-CEM sublines expressing classic or atypical multidrug resistance.
Topics: Cyclosporine; Dihydropyridines; Dose-Response Relationship, Drug; Drug Resistance; Drug Screening Assays, Antitumor; Flunarizine; Humans; Leukemia, T-Cell; Piperidines; Quinidine; Teniposide; Triazines; Tumor Cells, Cultured; Verapamil; Vinblastine | 1994 |