quinacrine and sr141716

quinacrine has been researched along with sr141716 in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (33.33)29.6817
2010's2 (66.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Awumey, EM; Bukoski, RD; Diz, DI; Hill, SK1

Other Studies

3 other study(ies) available for quinacrine and sr141716

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
Cytochrome P-450 metabolites of 2-arachidonoylglycerol play a role in Ca2+-induced relaxation of rat mesenteric arteries.
    American journal of physiology. Heart and circulatory physiology, 2008, Volume: 294, Issue:5

    Topics: 8,11,14-Eicosatrienoic Acid; Acetylcholine; Animals; Arachidonic Acids; Calcium; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Glycerides; Lipoprotein Lipase; Male; Mesenteric Arteries; Miconazole; Peptides; Phenylephrine; Phospholipase A2 Inhibitors; Phospholipases A2; Piperidines; Potassium Channel Blockers; Potassium Channels, Calcium-Activated; Pyrazoles; Quinacrine; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptors, Calcium-Sensing; Rimonabant; Signal Transduction; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents

2008