quinacrine and pentobarbital

quinacrine has been researched along with pentobarbital in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19903 (50.00)18.7374
1990's0 (0.00)18.2507
2000's2 (33.33)29.6817
2010's1 (16.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Creveling, CR; Daly, JW; Lewandowski, GA; McNeal, ET1
Lombardo, F; Obach, RS; Waters, NJ1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
Paul, SM; Schwartz, RD; Skolnick, P1
Greengard, P; Quinn, GP; Reid, MB1

Other Studies

6 other study(ies) available for quinacrine and pentobarbital

ArticleYear
[3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
    Journal of medicinal chemistry, 1985, Volume: 28, Issue:3

    Topics: Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Anesthetics, Local; Animals; Batrachotoxins; Calcium Channel Blockers; Cyclic AMP; Guinea Pigs; Histamine H1 Antagonists; In Vitro Techniques; Ion Channels; Neurotoxins; Sodium; Tranquilizing Agents; Tritium

1985
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Regulation of gamma-aminobutyric acid/barbiturate receptor-gated chloride ion flux in brain vesicles by phospholipase A2: possible role of oxygen radicals.
    Journal of neurochemistry, 1988, Volume: 50, Issue:2

    Topics: Acetophenones; Animals; Brain; Chlorides; Fatty Acids; Free Radicals; Ion Channels; Male; Oxygen; Pentobarbital; Phospholipases; Phospholipases A; Phospholipases A2; Quinacrine; Rats; Rats, Inbred Strains; Receptors, GABA-A; Receptors, Neurotransmitter; Serum Albumin, Bovine; Superoxide Dismutase; Synaptosomes; Xanthine; Xanthine Oxidase; Xanthines

1988
Prevention by antidepressant drugs of reserpine effect on pyridine nucleotide metabolism.
    Molecular pharmacology, 1966, Volume: 2, Issue:4

    Topics: Aminopyrine; Amitriptyline; Amphetamine; Animals; Antidepressive Agents; Atropine; Benactyzine; Caffeine; Chlorpheniramine; Chlorpromazine; Female; Hexobarbital; Hydralazine; Hypothalamus; Imipramine; Iproniazid; Isoniazid; Liver; Meprobamate; Methacholine Compounds; Morphine; NAD; Niacinamide; Pargyline; Pentobarbital; Phenylbutazone; Phenytoin; Quinacrine; Rats; Reserpine; Tranylcypromine; Tripelennamine; Zoxazolamine

1966