quinacrine and naloxone

quinacrine has been researched along with naloxone in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19901 (12.50)18.7374
1990's1 (12.50)18.2507
2000's3 (37.50)29.6817
2010's3 (37.50)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Gao, F; Lombardo, F; Obach, RS; Shalaeva, MY1
Lombardo, F; Obach, RS; Waters, NJ1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Gartner, SL; Shakir, KM; Simpkins, CO; Sobel, DO; Williams, TJ1
Capasso, A; Sorrentino, L1

Other Studies

8 other study(ies) available for quinacrine and naloxone

ArticleYear
Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics.
    Journal of medicinal chemistry, 2004, Feb-26, Volume: 47, Issue:5

    Topics: Algorithms; Blood Proteins; Half-Life; Humans; Hydrogen-Ion Concentration; Models, Biological; Pharmaceutical Preparations; Pharmacokinetics; Protein Binding; Statistics as Topic; Tissue Distribution

2004
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
Phospholipase C activity in human polymorphonuclear leukocytes: partial characterization and effect of indomethacin.
    Enzyme, 1989, Volume: 42, Issue:4

    Topics: Calcium; Deoxycholic Acid; Fatty Acids, Nonesterified; Humans; Indomethacin; Kinetics; Lidocaine; Naloxone; Neutrophils; Quinacrine; Type C Phospholipases

1989
Arachidonic acid and its metabolites are involved in the expression of morphine dependence in guinea-pig isolated ileum.
    European journal of pharmacology, 1997, Jul-09, Volume: 330, Issue:2-3

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acid; Cyclooxygenase Inhibitors; Guinea Pigs; Ileum; In Vitro Techniques; Lipoxygenase Inhibitors; Male; Masoprocol; Meloxicam; Morphine; Muscle Contraction; Naloxone; Narcotic Antagonists; Phospholipases A; Phospholipases A2; Quinacrine; Substance-Related Disorders; Thiazines; Thiazoles; Tolmetin

1997