quercetin-3--o-beta-d-glucopyranoside and taxifolin

quercetin-3--o-beta-d-glucopyranoside has been researched along with taxifolin* in 1 studies

Other Studies

1 other study(ies) available for quercetin-3--o-beta-d-glucopyranoside and taxifolin

ArticleYear
Effects of phytochemicals on in vitro anti-inflammatory activity of Bifidobacterium adolescentis.
    Bioscience, biotechnology, and biochemistry, 2015, Volume: 79, Issue:5

    Probiotics have been shown to improve the condition of not only the human gastrointestinal tract but also the entire body. We found that quercetin enhances the anti-inflammatory activity of Bifidobacterium adolescentis, which is abundant in human intestines. Here, we assessed whether certain phytochemicals could enhance the anti-inflammatory activity of B. adolescentis. Bifidobacteria were anaerobically cultured with phytochemicals for 3 h, and the anti-inflammatory activity of the supernatants was estimated by testing their ability to inhibit nitric oxide (NO) production by lipopolysaccharide-stimulated RAW264 macrophages. Of the 55 phytochemicals tested, phloretin, (+)-taxifolin, and (-)-epigallocatechin gallate as well as quercetin-3-O-glucoside and quercetin-4'-O-glucoside were similar to quercetin in promoting NO suppression by B. adolescentis. In addition, the phytochemicals excluding quercetin increased the concentrations of lactic and acetic acids in the co-culture supernatants. These results suggest that some phytochemicals may activate the anti-inflammatory function of B. adolescentis.

    Topics: Acetic Acid; Animals; Anti-Inflammatory Agents; Bifidobacterium; Catechin; Cell Line; Coculture Techniques; Dose-Response Relationship, Drug; Flavonoids; Glucosides; Lactic Acid; Lipopolysaccharides; Macrophages; Mice; Nitric Oxide; Phytochemicals; Probiotics; Quercetin

2015