pyroxasulfone has been researched along with prosulfocarb* in 3 studies
3 other study(ies) available for pyroxasulfone and prosulfocarb
Article | Year |
---|---|
Effect of crop residues on interception and activity of prosulfocarb, pyroxasulfone, and trifluralin.
Crop residue retention on the soil surface in no-tillage system can intercept pre-emergent herbicides and reduce their efficacy. Three experiments were conducted to investigate the effect of crop residue amount (0, 1, 2 and 4 t ha-1), moisture (wet versus dry), type (wheat, barley, canola, chickpea and lupin) and age (fresh or aged for one year) on the interception and subsequent leaching of prosulfocarb, pyroxasulfone, and trifluralin from the residue into soil. Bioassays, using cucumber and annual ryegrass as indicator plants, were used to assess herbicide activity/availability in the soil and on the residue. Herbicide interception increased considerably as residue quantity increased from 2 to 4 t ha-1. After simulated rainfall, which washed herbicide into the soil, complete control of ryegrass occurred for trifluralin with 0 t ha-1 residue, for prosulfocarb with 0 and 1 t ha-1 residue, and for pyroxasulfone with all residue rates. Therefore, with rain or irrigation, pyroxasulfone was the herbicide least affected by high residue loads. Less chemical leached from the crop residue into the soil after rainfall, when prosulfocarb and trifluralin were applied to wet residue compared with dry residue, but the initial moisture condition had no effect on the leaching of pyroxasulfone from residue. If practically possible, farmers should minimise spraying prosulfocarb and trifluralin onto wet crop residue. Barley and wheat residues intercepted more herbicide than an equivalent mass of canola, chickpea or lupin residue, which was largely due to the increased ground cover with cereal residues. The effect of residue age on herbicide interception and leaching was relatively small and variable. Overall, more herbicide reached the soil when sprayed on one-year old residue than new residue, which was largely due to reduced ground cover with aged residue. A strong positive linear relationship existed between ground cover percentage and growth of bioassay species (r2 = 0.75). This means that there was little difference in the ability of residue to adsorb and retain herbicide between crop residue types and ages, such that farmers can simply use the ground cover of the crop residue to assess interception. Topics: Carbamates; Herbicides; Hordeum; Isoxazoles; Lolium; Sulfones; Trifluralin; Triticum | 2018 |
Cross-resistance to prosulfocarb + S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum.
Weeds can be a greater constraint to crop production than animal pests and pathogens. Pre-emergence herbicides are crucial in many cropping systems to control weeds that have evolved resistance to selective post-emergence herbicides. In this study we assessed the potential to evolve resistance to the pre-emergence herbicides prosulfocarb + S-metolachlor or pyroxasulfone in 50 individual field Lolium rigidum populations collected in a random survey in Western Australia prior to commercialisation of these pre-emergence herbicides.. This study shows for the first time that in randomly collected L. rigidum field populations the selection with either prosulfocarb + S-metolachlor or pyroxasulfone can result in concomitant evolution of resistance to both prosulfocarb + S-metolachlor and pyroxasulfone after three generations.. In the major weed L. rigidum, traits conferring resistance to new herbicides can be present before herbicide commercialisation. Proactive and multidisciplinary research (evolutionary ecology, modelling and molecular biology) is required to detect and analyse resistant populations before they can appear in the field. Several studies show that evolved cross-resistance in weeds is complex and often unpredictable. Thus, long-term management of cross-resistant weeds must be achieved through heterogeneity of selection by effective chemical, cultural and physical weed control strategies that can delay herbicide resistance evolution. © 2016 Society of Chemical Industry. Topics: Acetamides; Biological Evolution; Carbamates; Drug Resistance, Multiple; Herbicide Resistance; Herbicides; Isoxazoles; Lolium; Sulfones; Weed Control; Western Australia | 2016 |
Cross-resistance to prosulfocarb and triallate in pyroxasulfone-resistant Lolium rigidum.
Plants can rapidly evolve resistance to herbicide in response to repeated selection. This study focuses on cross-resistance patterns observed in Lolium rigidum following pyroxasulfone recurrent selection.. The parental MR (multiresistant) population following four generations of pyroxasulfone recurrent selection evolved cross-resistance to prosulfocarb and triallate. At the recommended label rate of prosulfocarb or triallate (2000 g ha(-1) ), the progeny selected four times with pyroxasulfone (MR4) displayed 58 and 35% plant survival respectively. One additional cycle of prosulfocarb selection increased the resistance level to both prosulfocarb and triallate in the population MR4-P1. Prosulfocarb resistance is yet to be reported in L. rigidum field populations.. This study suggests that L. rigidum plants can rapidly evolve cross-resistance to several wheat-selective herbicides under recurrent selection of a single mode of action. Weed populations displaying broad-spectrum cross-resistance to several herbicide modes of action are increasing in frequency in intensive world agriculture. Proactive and integrated measures for resistance management need to be developed globally on appropriate herbicide use in crop rotations. Topics: Carbamates; Herbicide Resistance; Herbicides; Isoxazoles; Lolium; Plant Weeds; Sulfones; Triallate; Weed Control | 2013 |