pyrophosphate has been researched along with ribose-5-phosphate* in 3 studies
3 other study(ies) available for pyrophosphate and ribose-5-phosphate
Article | Year |
---|---|
The formation of a 1-5 phosphodiester linkage in the spontaneous breakdown of 5-phosphoribosyl-alpha-1-pyrophosphate.
The decomposition of 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) in the presence of Mg2+ at pH=7.8 yields a combination of products including ribose 5-phosphate, ribose 1-phosphate, 5-phosphoribosyl 1,2 cyclic phosphate, inorganic phosphate, and pyrophosphate. Hydrogen decoupled 31P NMR analysis of the product mixture also exhibits a sharp peak (+2.6 ppm from phosphocreatine) in a chemical shift region which includes phosphodiester bonds. Alkaline phosphatase treatment of the product mixture results in cleavage of monophosphate esters such as ribose 1-phosphate and ribose 5-phosphate, but does not affect the unidentified peak. Homonuclear (1H) correlation spectroscopy (COSY) of a partially purified sample was successful in identifying the hydrogen spectra of this compound. Combined with results from the splitting patterns of selectively decoupled 31P spectra, the COSY data indicate that several hydrogens are directly coupled to the unknown phosphate group with J value matches to the hydrogen on carbon one and to the two hydrogens on carbon five. Heteronuclear (1H-31P) chemical shift correlation studies confirm these couplings and further substantiate the formation of a ribose 1-5 phosphate linkage during the degradation of PRPP under these conditions. It is presently unknown whether this is an intramolecular or intermolecular phosphodiester linkage, although some spectroscopic evidence suggest the intramolecular bond formation, i.e. a ribose 1,5-cyclic phosphate (R-1,5cP). The formation of R-1,5cP helps explain the observation that the 5-phosphate group from PRPP becomes labile during the spontaneous degradation of PRPP. Topics: Diphosphates; Hydrogen-Ion Concentration; Hydrolysis; Magnesium; Magnetic Resonance Spectroscopy; Phosphates; Phosphoribosyl Pyrophosphate; Ribosemonophosphates | 2000 |
COUPLING OF PHOSPHORYLATION AND CARBON DIOXIDE FIXATION IN EXTRACTS OF THIOBACILLUS THIOPARUS.
Johnson, Emmett J. (University of Mississippi Medical Center, Jackson), and Harry D. Peck, Jr. Coupling of phosphorylation and carbon dioxide fixation in extracts of Thiobacillus thioparus. J. Bacteriol. 89:1041-1050. 1965.-A cell-free system from Thiobacillus thioparus which fixes large quantities of C(14)O(2) in the presence of ribose-5-phosphate, adenosine triphosphate (ATP), and Mg(++) has been described. The specific activity (0.041 mumole of ribulose-1,5-diphosphate min(-1) mg(-1) protein) of the CO(2)-fixing system approaches that of green plants, and is further evidence for the importance of the role of carboxydismutase in the thiobacilli. In addition to ATP, adenosine diphosphate (ADP) and other nucleoside triphosphates served with varying degrees of effectiveness for the fixation of C(14)O(2). The ATP requirement for CO(2) fixation was partially replaced under aerobic conditions by a combination of SO(3) (=), PO(4) ( identical with), and adenosine monophosphate (AMP). Phosphorylation and CO(2) fixation were separated in time by first incubating SO(3) (=) and AMP aerobically, and then anaerobically introducing C(14)O(3) (=) and ribose-5-phosphate into the reaction mixture. During the first incubation, P(32)O(4) ( identical with) was esterified into nucleotides, mainly ADP, and in the second incubation C(14)O(2) was fixed, with the concomitant utilization of almost equal amounts of the esterified phosphate. These data provide the first in vitro evidence for the mechanism of the coupling of CO(2) fixation and phosphorylation in T. thioparus. The fixation of C(14)O(2) was shown to be almost completely inhibited by AMP. This inhibition was not due to the conversion of ATP to ADP by adenylic kinase, or to the binding of magnesium by the nucleotide. The inhibition was specific for AMP, since other mononucleotides, adenosine, and adenine did not inhibit. The AMP regulation of CO(2) fixation may represent a basic control mechanism in autotrophic metabolism. Topics: Adenine Nucleotides; Adenosine Triphosphate; Carbon Dioxide; Carbon Isotopes; Chromatography; Diphosphates; Electrophoresis; Magnesium; Metabolism; Phosphates; Phosphorus Isotopes; Phosphorylation; Phosphotransferases; Research; Ribosemonophosphates; Thiobacillus | 1965 |
Pyrophosphorylation of ribose 5-phosphate in the enzymatic synthesis of 5-phosphorylribose 1-pyrophosphate.
Topics: Adenosine Triphosphate; Diphosphates; Pentosephosphates; Ribose; Ribosemonophosphates | 1958 |