pyrophosphate and methyl-jasmonate

pyrophosphate has been researched along with methyl-jasmonate* in 2 studies

Other Studies

2 other study(ies) available for pyrophosphate and methyl-jasmonate

ArticleYear
Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies).
    Plant molecular biology, 2011, Volume: 77, Issue:6

    Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk.

    Topics: Acetates; Alkyl and Aryl Transferases; Cyclopentanes; Diphosphates; Diterpenes; Oxylipins; Picea; Plant Growth Regulators; Polyisoprenyl Phosphates; Sesquiterpenes; Terpenes

2011
Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies).
    Phytochemistry, 2008, Volume: 69, Issue:1

    Geranyl diphosphate (GPP), the universal precursor of monoterpenes, is formed from isopentenyl diphosphate and dimethylallyl diphosphate by the action of geranyl diphosphate synthase, one of the key branchpoint enzymes of terpene biosynthesis. Three types of GPP synthase can be distinguished in plants based on sequence similarity and subunit architecture, but until now individual species have been reported to contain only one of these types. Here we show that the conifer, Norway spruce (Picea abies), contains two different types of GPP synthase belonging to two separate groups of homodimeric proteins. One enzyme, designated PaIDS2 (P. abies isoprenyl diphosphate synthase 2), has high sequence similarity to other gymnosperm GPP synthases. It produces solely GPP in in vitro assays after expression in Escherichia coli and likely participates in monoterpene biosynthesis accompanying induced oleoresin formation, based on dramatic increases in transcript level after methyl jasmonate application. The other enzyme, designated PaIDS3, has highest similarity to the previously reported Arabidopsis thaliana GPP synthase and several other angiosperm sequences, and is not associated with induced oleoresin formation in Norway spruce. In vitro assay of this protein and one encoded by a similar gene sequence from Quercus robur gave substantial amounts of the larger prenyl diphosphates, FPP and GGPP, in addition to GPP. Hence these proteins may not be involved in monoterpene formation and could conceivably form products in addition to GPP in planta.

    Topics: Acetates; Alkyl and Aryl Transferases; Amino Acid Sequence; Cloning, Molecular; Cyclopentanes; Diphosphates; Diterpenes; DNA, Complementary; Gene Expression Regulation, Enzymologic; Molecular Sequence Data; Oxylipins; Phylogeny; Picea; Quercus; Terpenes

2008