pyrophosphate and mastoparan

pyrophosphate has been researched along with mastoparan* in 3 studies

Other Studies

3 other study(ies) available for pyrophosphate and mastoparan

ArticleYear
Phospholipase D in Phytophthora infestans and its role in zoospore encystment.
    Molecular plant-microbe interactions : MPMI, 2002, Volume: 15, Issue:9

    We show that differentiation of zoospores of the late blight pathogen Phytophthora infestans into cysts, a process called encystment, was triggered by both phosphatidic acid (PA) and the G-protein activator mastoparan. Mastoparan induced the accumulation of PA, indicating that encystment by mastoparan most likely acts through PA. Likewise, mechanical agitation of zoospores, which often is used to induce synchronized encystment, resulted in increased levels of PA. The levels of diacylglycerolpyrophosphate (DGPP), the phosphorylation product of PA, increased simultaneously. Also in cysts, sporangiospores, and mycelium, mastoparan induced increases in the levels of PA and DGPP. Using an in vivo assay for phospholipase D (PLD) activity, it was shown that the mastoparan-induced increase in PA was due to a stimulation of the activity of this enzyme. Phospholipase C in combination with diacylglycerol (DAG) kinase activity also can generate PA, but activation of these enzymes by mastoparan was not detected under conditions selected to highlight 32P-PA production via DAG kinase. Primary and secondary butanol, which, like mastoparan, have been reported to activate G-proteins, also stimulated PLD activity, whereas the inactive tertiary isomer did not. Similarly, encystment was induced by n- and sec-butanol but not by tert-butanol. Together, these results show that Phytophthora infestans contains a mastoparan- and butanol-inducible PLD pathway and strongly indicate that PLD is involved in zoospore encystment. The role of G-proteins in this process is discussed.

    Topics: Butanols; Diacylglycerol Kinase; Diphosphates; Ethanol; Glycerol; Intercellular Signaling Peptides and Proteins; Peptides; Phosphatidic Acids; Phospholipase D; Phospholipids; Phosphorus Radioisotopes; Phytophthora; Spores, Fungal; Wasp Venoms

2002
Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation.
    The Plant journal : for cell and molecular biology, 2001, Volume: 25, Issue:1

    Rhizobium-secreted nodulation factors are lipochitooligosaccharides that trigger the initiation of nodule formation on host legume roots. The first visible effect is root hair deformation, but the perception and signalling mechanisms that lead to this response are still unclear. When we treated Vicia sativa seedlings with mastoparan root hairs deformed, suggesting that G proteins are involved. To investigate whether mastoparan and Nod factor activate lipid signalling pathways initiated by phospholipase C (PLC) and D (PLD), seedlings were radiolabelled with [(32)P]orthophosphate prior to treatment. Mastoparan stimulated increases in phosphatidic acid (PA) and diacylglycerol pyrophosphate, indicative of PLD or PLC activity in combination with diacylglycerol kinase (DGK) and PA kinase. Treatment with Nod factor had similar effects, although less pronounced. The inactive mastoparan analogue Mas17 had no effect. The increase in PA was partially caused by the activation of PLD that was monitored by its in vivo transphosphatidylation activity. The application of primary butyl alcohols, inhibitors of PLD activity, blocked root hair deformation. Using different labelling strategies, evidence was provided for the activation of DGK. Since the PLC antagonist neomycin inhibited root hair deformation and the formation of PA, we propose that PLC activation produced diacylglycerol (DAG), which was subsequently converted to PA by DGK. The roles of PLC and PLD in Nod factor signalling are discussed.

    Topics: Diphosphates; Enzyme Inhibitors; Estrenes; Fabaceae; Glycerol; Intercellular Signaling Peptides and Proteins; Lipopolysaccharides; Models, Biological; Neomycin; Peptides; Phosphates; Phosphatidic Acids; Phospholipase D; Plant Roots; Plants, Medicinal; Pyrrolidinones; Rhizobium; Signal Transduction; Type C Phospholipases; Wasp Venoms

2001
Identification of diacylglycerol pyrophosphate as a novel metabolic product of phosphatidic acid during G-protein activation in plants.
    The Journal of biological chemistry, 1996, Jun-28, Volume: 271, Issue:26

    We provide evidence that phosphatidic acid (PtdOH) formed during signaling in plants is metabolized by a novel pathway. In much of this study, 32Pi-labeled Chlamydomonas cells were used, and signaling was activated by adding the G-protein activator mastoparan. Within seconds of activation, large amounts of [32P]PtdOH were formed, with peak production at about 4 min, when the level was 5-25-fold higher than the control. As the level of [32P]PtdOH subsequently decreased, an unknown phospholipid (PLX) increased in radiolabeling; before activation it was barely detectable. The chromatographic properties of PLX resembled those of lyso-PtdOH and CMP.PtdOH but on close inspection were found to be different. PLX was shown to be diacylglycerol pyrophosphate (DGPP), the product of a newly discovered enzyme, phosphatidate kinase, whose in vitro activity was described recently (Wissing, J. B., and Behrbohm, H. (1993) Plant Physiol. 102, 1243-1249). The identity of DGPP was established by co-chromatrography with a standard and by degradation analysis as follows: [32P]DGPP was deacylated, and the product (glycerolpyrophosphate, GroPP) was hydrolyzed by mild acid treatment or pyrophosphatase to produce GroP and Pi as the only radioactive products. Since DGPP is the pyrophosphate derivative of PtdOH and is formed as the concentration of PtdOH decreases, we assumed that PtdOH was converted in vivo to DGPP. This was confirmed by showing that during a short labeling protocol while the specific radioactivity of DGPP was increasing, the specific radioactivity of the 32Pi derived from DGPP as above was higher than that of [32P]GroP. DGPP was also formed in suspension cultures of tomato and potato cells, and its synthesis was activated by mastoparan. Moreover, it was also found in intact tissues of a number of higher plants, for example, carnation flower petals, vetch roots, leaves of fig-leaved goosefoot, and common persicaria and microspores of rape seed. Our results suggest that DGPP is a common but minor plant lipid that increases in concentration when signaling is activated. Possible functions of DGPP in phospholpase C and D signaling cascades are discussed.

    Topics: Animals; Chlamydomonas; Diphosphates; GTP-Binding Proteins; Intercellular Signaling Peptides and Proteins; Peptides; Phosphatidic Acids; Phospholipase D; Phospholipids; Plants; Signal Transduction; Type C Phospholipases; Wasp Venoms

1996