pyromorphite has been researched along with lead-sulfate* in 2 studies
2 other study(ies) available for pyromorphite and lead-sulfate
Article | Year |
---|---|
Lead immobilization assisted by fungal decomposition of organophosphate under various pH values.
Organic phosphates (OP) account for approximately 30-90% of total soil P. However, it is too stable to be utilized by plants as available P source. Aspergillus niger (A. niger) has considerable ability to secret phytase to decompose OP. Meanwhile, mineralization of lead (Pb) is efficient to achieve its remediation. This study hence investigated Pb immobilization by A. niger assisted decomposition of OP under variable acidic environments. A. niger can survive in the acidic environment as low as pH = 1.5. However, alternation of environmental pH within 3.5-6.5 significantly changed fungal phytase secretion. In particular, weakly acidic stimulation (pH of ~5.5) increased phytase activity secreted by A. niger to 0.075 µmol/min/mL, hence elevating P release to a maximal concentration of ~20 mg/L. After Pb addition, ATR-IR and TEM results demonstrated the formation of abundant chloropyromorphite [Pb Topics: 6-Phytase; Aspergillus niger; Lead; Minerals; Organophosphates; Phosphates; Soil; Soil Pollutants | 2019 |
Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
This study investigated phosphate-induced lead immobilization from different Pb minerals in soils under varying pHs. Four soils were used, including one Pb-contaminated soil (NC-Soil) and three soils spiked with litharge (PbO), cerrusite (PbCO3), or anglesite (PbSO4), referred to as PbO-soil, PbCO3-soil, and PbSO4-soil, respectively. The soils were equilibrated with KCl and Ca(H2PO4)(2).H2O under pH of 3-7. At low pH (3 and 5), Pb solubility followed PbO-soil>PbCO3-soil>PbSO4-soil; while at pH=7, it was PbSO4-soil>PbO-soil>PbCO3-soil. Phosphate decreased Pb dissolution time from >180 to <60 min and reduced soluble Pb by 67-100%. This was mostly via transformation of Pb minerals into chloropyromorphite [Pb(5)(PO(4))(3)Cl]. Our results indicated that P addition can effectively transform various Pb minerals into insoluble chloropyromorphite in soils. This transformation was more significant at acidic condition (e.g., pH Topics: Carbonates; Environmental Restoration and Remediation; Hydrogen-Ion Concentration; Lead; Minerals; Oxides; Phosphates; Soil; Soil Pollutants; Solubility | 2008 |