pyriprole has been researched along with fipronil* in 2 studies
1 trial(s) available for pyriprole and fipronil
Article | Year |
---|---|
Efficacy of fipronil-(S)-methoprene, metaflumizone combined with amitraz, and pyriprole commercial spot-on products in preventing Culex pipiens pipiens from feeding on dogs.
A controlled clinical trial was carried out to assess the effectiveness of pyriprole, metaflumizone combined with amitraz, and fipronil-(S)-methoprene commercial spot-on products in preventing adult female Culex pipiens pipiens from feeding on dogs. Twenty-four beagle dogs were tested for their attractiveness to the mosquitoes and ranked accordingly to produce four groups of equivalent sensitivity to mosquitoes; six were treated with the pyriprole spot-on, six with the metaflumizone combined with amitraz spot-on, six with the fipronil-(S)-methoprene spot-on, and six were left untreated. All the dogs were challenged with 50 unfed adult female Culex in cages for one hour seven days before the treatment, and one and seven days after it. The mosquitoes were checked for blood feeding after one hour and for mortality 24 hours after they had been released into the cages. There was a significant reduction in the number of engorged mosquitoes only with the fipronil-(S)-methoprene product and there were significantly more dead mosquitoes with this product and the pyriprole product, but their effects were too small for them to be recommended for use in a dirofilariosis prevention programme. Topics: Administration, Cutaneous; Animals; Culex; Dog Diseases; Dogs; Drug Combinations; Female; Insect Bites and Stings; Insect Control; Insecticides; Male; Methoprene; Pyrazoles; Pyridines; Semicarbazones; Toluidines; Treatment Outcome | 2009 |
1 other study(ies) available for pyriprole and fipronil
Article | Year |
---|---|
The role of Rdl in resistance to phenylpyrazoles in Drosophila melanogaster.
Extensive use of older generation insecticides may result in pre-existing cross-resistance to new chemical classes acting at the same target site. Phenylpyrazole insecticides block inhibitory neurotransmission in insects via their action on ligand-gated chloride channels (LGCCs). Phenylpyrazoles are broad-spectrum insecticides widely used in agriculture and domestic pest control. So far, all identified cases of target site resistance to phenylpyrazoles are based on mutations in the Rdl (Resistance to dieldrin) LGCC subunit, the major target site for cyclodiene insecticides. We examined the role that mutations in Rdl have on phenylpyrazole resistance in Drosophila melanogaster, exploring naturally occurring variation, and generating predicted resistance mutations by mutagenesis. Natural variation at the Rdl locus in inbred strains of D. melanogaster included gene duplication, and a line containing two Rdl mutations found in a highly resistant line of Drosophila simulans. These mutations had a moderate impact on survival following exposure to two phenylpyrazoles, fipronil and pyriprole. Homology modelling suggested that the Rdl chloride channel pore contains key residues for binding fipronil and pyriprole. Mutagenesis of these sites and assessment of resistance in vivo in transgenic lines showed that amino acid identity at the Ala(301) site influenced resistance levels, with glycine showing greater survival than serine replacement. We confirm that point mutations at the Rdl 301 site provide moderate resistance to phenylpyrazoles in D. melanogaster. We also emphasize the beneficial aspects of testing predicted mutations in a whole organism to validate a candidate gene approach. Topics: Alanine; Amino Acid Sequence; Animals; Animals, Genetically Modified; Base Sequence; Chloride Channels; Dieldrin; Drosophila melanogaster; Drosophila Proteins; Gene Duplication; Insecticide Resistance; Insecticides; Molecular Sequence Data; Mutation; Point Mutation; Pyrazoles; Pyridines; Receptors, GABA-A | 2014 |