pyrimidinones and willardiine

pyrimidinones has been researched along with willardiine* in 24 studies

Other Studies

24 other study(ies) available for pyrimidinones and willardiine

ArticleYear
Chemical interplay in the mechanism of partial agonist activation in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors.
    Biochemistry, 2008, Jan-08, Volume: 47, Issue:1

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, one subtype in the family of ionotropic glutamate receptors, are the main receptors responsible for excitatory signaling in the mammalian central nervous system. Previous studies utilitizing the isolated ligand binding domain of these receptors have provided insight into the role of specific ligand-protein interactions in mediating receptor activation. However, these studies relied heavily on the partial agonist kainate, in which the alpha-amine group is constrained in a pyrrolidine ring. Here we have studied a series of substituted and unsubstituted willardiines with primary alpha-amine groups similar to that of the full agonist glutamate whose activation can be varied depending on the size of the substituent. The specific ligand-protein interactions in the mechanism of partial agonism in this subtype were investigated using vibrational spectroscopy, and the large-scale conformational changes in the ligand binding domain were studied with fluorescence resonance energy transfer (FRET). These investigations show that the strength of the interaction at the alpha-amine group correlates with the extent of cleft closure and extent of activation, with the agonist of higher efficacy showing larger cleft closure and stronger interactions at this group, suggesting that this is one of the mechanisms by which the agonist controls receptor activation.

    Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Cell Line; Fluorescence Resonance Energy Transfer; Humans; Protein Binding; Protein Conformation; Protein Structure, Secondary; Pyrimidinones; Receptors, AMPA; Spectroscopy, Fourier Transform Infrared; Uracil

2008
NMR spectroscopy of the ligand-binding core of ionotropic glutamate receptor 2 bound to 5-substituted willardiine partial agonists.
    Journal of molecular biology, 2008, May-02, Volume: 378, Issue:3

    Glutamate receptors mediate neuronal intercommunication in the central nervous system by coupling extracellular neurotransmitter-receptor interactions to ion channel conductivity. To gain insight into structural and dynamical factors that underlie this coupling, solution NMR experiments were performed on the bilobed ligand-binding core of glutamate receptor 2 in complexes with a set of willardiine partial agonists. These agonists are valuable for studying structure-function relationships because their 5-position substituent size is correlated with ligand efficacy and extent of receptor desensitization, whereas the substituent electronegativity is correlated with ligand potency. NMR results show that the protein backbone amide chemical shift deviations correlate mainly with efficacy and extent of desensitization. Pronounced deviations occur at specific residues in the ligand-binding site and in the two helical segments that join the lobes by a disulfide bond. Experiments detecting conformational exchange show that micro- to millisecond timescale motions also occur near the disulfide bond and vary largely with efficacy and extent of desensitization. These results thus identify regions displaying structural and dynamical dissimilarity arising from differences in ligand-protein interactions and lobe closure that may play a critical role in receptor response. Furthermore, measures of line broadening and conformational exchange for a portion of the ligand-binding site correlate with ligand EC(50) data. These results do not have any correlate in the currently available crystal structures and thus provide a novel view of ligand-binding events that may be associated with agonist potency differences.

    Topics: Alanine; Binding Sites; Crystallography, X-Ray; Ligands; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular; Protein Conformation; Pyrimidinones; Receptors, AMPA; Uracil

2008
Neonatal hypoxic preconditioning involves vascular endothelial growth factor.
    Neurobiology of disease, 2007, Volume: 26, Issue:1

    We studied hypoxic preconditioning (HxP) in the murine developing brain, focusing on the role for vascular endothelial growth factor (VEGF). Newborn mice were used as follows: (1) HxP (or normoxia) then intracerebral (i.c.) NMDA or AMPA-kainate agonist; (2) HxP then intraperitoneal (i.p.) anti-VEGFR2/Flk1 or anti-VEGFR1/Flt1 monoclonal blocking antibody (mAb) then i.c. NMDA/AMPA-kainate agonist; (3) i.p. VEGF then i.c. NMDA/AMPA-kainate agonist; and (4) in mutants lacking the hypoxia-responsive element (HRE) of the VEGF-A gene (VEGF( partial differential/ partial differential)) and their wild-type littermates (VEGF(+/+)), HxP followed by i.c. NMDA agonist. HxP reduced the size of NMDA-related cortical and AMPA-kainate-related cortical and white matter excitotoxic lesions. Anti-VEGFR2/Flk1 mAb prevented HxP-induced neuroprotection. VEGF produced dose-dependent reduction in cortical lesions. HxP did not prevent, but instead exacerbated, brain lesions in VEGF( partial differential/ partial differential) mutants. Thus, exogenous as well as endogenous VEGF reduces excitotoxic brain lesions in the developing mouse. The VEGF/VEGFR2/Flk1 pathway is involved in the neuroprotective response to HxP.

    Topics: Aging; Alanine; Animals; Animals, Newborn; Antibodies, Blocking; Brain; Excitatory Amino Acid Agonists; Hypoxia, Brain; Ibotenic Acid; Injections, Intraperitoneal; Mice; Mice, Transgenic; Mutation; Promoter Regions, Genetic; Pyrimidinones; Recombinant Proteins; Uracil; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2; Weight Loss

2007
Synthesis and pharmacological characterization of N3-substituted willardiine derivatives: role of the substituent at the 5-position of the uracil ring in the development of highly potent and selective GLUK5 kainate receptor antagonists.
    Journal of medicinal chemistry, 2007, Apr-05, Volume: 50, Issue:7

    Some N3-substituted analogues of willardiine such as 11 and 13 are selective kainate receptor antagonists. In an attempt to improve the potency and selectivity for kainate receptors, a range of analogues of 11 and 13 were synthesized with 5-substituents on the uracil ring. An X-ray crystal structure of the 5-methyl analogue of 13 bound to GLUK5 revealed that there was allowed volume around the 4- and 5-positions of the thiophene ring, and therefore the 4,5-dibromo and 5-phenyl (67) analogues were synthesized. Compound 67 (ACET) demonstrated low nanomolar antagonist potency on native and recombinant GLUK5-containing kainate receptors (KB values of 7 +/- 1 and 5 +/- 1 nM for antagonism of recombinant human GLUK5 and GLUK5/GLUK2, respectively) but displayed IC50 values >100 microM for antagonism of GLUA2, GLUK6, or GLUK6/GLUK2.

    Topics: Alanine; Animals; Animals, Newborn; Binding Sites; Calcium; Cell Line; Crystallography, X-Ray; Humans; In Vitro Techniques; Ligands; Models, Molecular; Motor Neurons; Nerve Fibers, Unmyelinated; Protein Conformation; Pyrimidinones; Rats; Receptors, AMPA; Receptors, Kainic Acid; Recombinant Proteins; Spinal Nerve Roots; Stereoisomerism; Structure-Activity Relationship; Uracil

2007
Structure-activity relationship studies on N3-substituted willardiine derivatives acting as AMPA or kainate receptor antagonists.
    Journal of medicinal chemistry, 2006, Apr-20, Volume: 49, Issue:8

    N3-substitution of the uracil ring of willardiine with a variety of carboxyalkyl or carboxybenzyl substituents produces AMPA and kainate receptor antagonists. In an attempt to improve the potency and selectivity of these AMPA and kainate receptor antagonists a series of analogues with different terminal acidic groups and interacidic group spacers was synthesized and pharmacologically characterized. (S)-1-(2-Amino-2-carboxyethyl)-3-(2-carboxythiophene-3-ylmethyl)pyrimidine-2,4-dione (43, UBP304) demonstrated high potency and selectivity toward native GLU(K5)-containing kainate receptors (K(D) 0.105 +/- 0.007 microM vs kainate on native GLU(K5); K(D) 71.4 +/- 8.3 microM vs (S)-5-fluorowillardiine on native AMPA receptors). On recombinant human GLU(K5), GLU(K5)/GLU(K6), and GLU(K5)/GLU(K2), K(B) values of 0.12 +/- 0.03, 0.12 +/- 0.01, and 0.18 +/- 0.02 microM, respectively, were obtained for 43. However, 43 displayed no activity on homomeric GLU(K6) or GLU(K7) kainate receptors or homomeric GLU(A1-4) AMPA receptors (IC(50) values > 100 microM). Thus, 43 is a potent and selective GLU(K5) receptor antagonist.

    Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding Sites; Cell Line; Drug Evaluation, Preclinical; Humans; In Vitro Techniques; Molecular Structure; Pyrimidinones; Rats; Receptors, Kainic Acid; Recombinant Proteins; Structure-Activity Relationship; Time Factors; Uracil

2006
3-hydroxypyridazine 1-oxides as carboxylate bioisosteres: a new series of subtype-selective AMPA receptor agonists.
    Neuropharmacology, 2006, Volume: 51, Issue:1

    Three positional isomers (compounds 1, 2, and 3) of 1-uracilylalanine (willardiine) based on a 3-hydroxypyridazine 1-oxide scaffold with an alanine side-chain at positions 4 (1), 5 (2) or 6 (3) were tested for binding to recombinant homomeric AMPA receptor (AMPA-R) subtypes GluR1-4, as well for excitatory activity on the rat cortical wedge preparation. 1 had approximately 30 times higher affinity than willardiine while showing a similar selectivity profile, i.e. 22-fold selectivity for GluR1/2 over GluR3/4. The GluR1-4 affinities of 3 were similar to 1, however, its 31-fold selectivity for GluR1/2 over GluR3/4 is the highest yet observed among azine-based glutamate analogues. The non-isosteric congener 2 showed weaker binding to AMPA-Rs. In the cortical wedge, 1 evokes similar responses to AMPA, while 3 and 2 are 10- and 100-fold weaker, respectively. Dose-response curves on Xenopus laevis oocytes expressing GluR1-4(flip) confirmed that 1 and 3 are potent GluR1/2 receptor agonists (EC(50)s from 0.26 to 1.7microM) but are 10- to 160-fold less potent at GluR3/4. The structures, potencies and selectivities of this new class of AMPA agonists are compared with those of willardiine, 5-fluorowillardiine and azawillardiine, referring to the binding mode observed in the crystal structure of willardiine bound to GluR2-S1S2. The results indicate that the 3-hydroxypyridazine 1-oxide moiety can function as an outstanding carboxylate mimic at AMPA-Rs, leading the way to further fine-tuning of subtype selectivity. This little-explored molecular motif may find wider application in medicinal chemistry.

    Topics: Alanine; Animals; Carboxylic Acids; Cerebral Cortex; Cloning, Molecular; Cyclic N-Oxides; Dose-Response Relationship, Drug; Electrophysiology; In Vitro Techniques; Models, Molecular; Molecular Mimicry; Oocytes; Pyridazines; Pyrimidinones; Radioligand Assay; Rats; Receptors, AMPA; Receptors, Glutamate; Recombinant Proteins; RNA, Complementary; Structure-Activity Relationship; Uracil; Xenopus laevis

2006
Synthesis and pharmacology of willardiine derivatives acting as antagonists of kainate receptors.
    Journal of medicinal chemistry, 2005, Dec-01, Volume: 48, Issue:24

    The natural product willardiine (8) is an AMPA receptor agonist while 5-iodowillardiine (10) is a selective kainate receptor agonist. In an attempt to produce antagonists of kainate and AMPA receptors analogues of willardiine with substituents at the N3 position of the uracil ring were synthesized. The N3-4-carboxybenzyl substituted analogue (38c) was found to be equipotent at AMPA and GLUK5-containing kainate receptors in the neonatal rat spinal cord. The N3-2-carboxybenzyl substituted analogue (38a) proved to be a potent and selective GLUK5 subunit containing kainate receptor antagonist when tested on native rat and human recombinant AMPA and kainate receptor subtypes. The GLUK5 kainate receptor antagonist activity was found to reside in the S enantiomer (44a) whereas the R enantiomer (44b) was almost inactive. 5-Iodo substitution of the uracil ring of 44a gave 45, which was found to have enhanced potency and selectivity for GLUK5.

    Topics: Alanine; Animals; Animals, Newborn; Calcium; Cell Line; Humans; In Vitro Techniques; Long-Term Potentiation; Mossy Fibers, Hippocampal; Nerve Fibers, Unmyelinated; Protein Subunits; Pyrimidinones; Radioligand Assay; Rats; Receptors, AMPA; Receptors, Kainic Acid; Recombinant Proteins; Spinal Cord; Spinal Nerve Roots; Stereoisomerism; Structure-Activity Relationship; Uracil

2005
Structural requirements for novel willardiine derivatives acting as AMPA and kainate receptor antagonists.
    British journal of pharmacology, 2003, Volume: 138, Issue:6

    1. The natural product willardiine is an AMPA receptor agonist. We have examined the structural changes required to convert willardiine into an antagonist at AMPA and kainate receptors. Structure-activity analysis has been carried out to discover the structural features required to increase the potency and/or selectivity of the antagonists at AMPA or kainate receptors. 2. Reduction of the fast component of the dorsal root-evoked ventral root potential (fDR-VRP) has been used to investigate AMPA receptor antagonist activity. To examine antagonist activity at kainate receptors, the ability of compounds to depress kainate-induced depolarisations of dorsal root fibres was assessed. 3. Blocking ionisation of the uracil ring by adding a methyl group to the N(3) position was not sufficient to convert willardiine into an antagonist. However, willardiine derivatives with a side-chain bearing a carboxylic acid group at the N(3)-position of the uracil ring could antagonise AMPA and kainate receptors. 4. S stereochemistry was optimal for antagonism. When compounds with differing interacidic group chain lengths were compared, a group chain length of two methylene groups was preferable for AMPA receptor antagonism in the series of compounds bearing a carboxyalkyl side chain (UBP275, UBP277 and UBP279 reduced the fDR-VRP with IC(50) values of 287+/-41, 23.8+/-3.9 and 136+/-17 micro M, respectively). For kainate receptor antagonism, two or three methylene groups were almost equally acceptable (UBP277 and UBP279 reduced dorsal root kainate responses with apparent K(D) values of 73.1+/-4.5 and 60.5+/-4.1 micro M, respectively). 5. Adding an iodo group to the 5-position of UBP277 and UBP282 enhanced activity at kainate receptors (UBP291 and UBP301 antagonised kainate responses on the dorsal root with apparent K(D) values of 9.83+/-1.62 and 5.94+/-0.63 micro M, respectively). 6. The most useful antagonist identified in this study was UBP301, which was a potent and approximately 30-fold selective kainate receptor antagonist. UBP282 may also be of use in isolating a non-GluR5-mediated kainate response.

    Topics: Alanine; Animals; Animals, Newborn; Drug Antagonism; Evoked Potentials; Molecular Conformation; Molecular Structure; Nerve Fibers, Unmyelinated; Pyrimidinones; Rats; Receptors, AMPA; Receptors, Kainic Acid; Spinal Cord; Spinal Nerve Roots; Structure-Activity Relationship; Uracil

2003
Probing the function, conformational plasticity, and dimer-dimer contacts of the GluR2 ligand-binding core: studies of 5-substituted willardiines and GluR2 S1S2 in the crystal.
    Biochemistry, 2003, May-13, Volume: 42, Issue:18

    Numerous naturally occurring and synthetic alpha-amino acids act as agonists on (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazole) propionic acid (AMPA) receptors but nevertheless display significant differences in their functional properties and modes of interaction. The 5-substituted willardiines are a series of compounds that exhibit a range of affinities, act as partial agonists, and give rise to intermediate levels of activation and desensitization. However, the molecular basis for the activities of 5-substituted willardiines has not been conclusively elaborated at the level of atomic resolution. Here we provide insight into the molecular basis of the potency and efficacy elicited by the 5-substituted willardiines on the basis of cocrystal structures with the GluR2 ligand-binding core. We also show that the crystallized ligand-binding core has an affinity for agonists similar to the ligand-binding core in solution. Analysis of multiple crystal lattices suggests modes by which the ligand-binding core dimers interact in the tetrameric receptor. These studies further our understanding of how subtle differences in the structures of agonists are correlated to changes in the conformation of residues and water molecules in the immediate binding pocket and to the degree of domain closure.

    Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding Sites; Crystallography, X-Ray; Dimerization; Excitatory Amino Acid Agonists; Kainic Acid; Ligands; Magnetic Resonance Spectroscopy; Models, Molecular; Mutagenesis, Site-Directed; Protein Binding; Protein Conformation; Pyrimidinones; Quinoxalines; Rats; Receptors, AMPA; Structure-Activity Relationship; Uracil

2003
Structural basis for partial agonist action at ionotropic glutamate receptors.
    Nature neuroscience, 2003, Volume: 6, Issue:8

    An unresolved problem in understanding neurotransmitter receptor function concerns the mechanism(s) by which full and partial agonists elicit different amplitude responses at equal receptor occupancy. The widely held view of 'partial agonism' posits that resting and active states of the receptor are in equilibrium, and partial agonists simply do not shift the equilibrium toward the active state as efficaciously as full agonists. Here we report findings from crystallographic and electrophysiological studies of the mechanism of activation of an AMPA-subtype glutamate receptor ion channel. In these experiments, we used 5-substituted willardiines, a series of partial agonists that differ by only a single atom. Our results show that the GluR2 ligand-binding core can adopt a range of ligand-dependent conformational states, which in turn control the open probability of discrete subconductance states of the intact ion channel. Our findings thus provide a structure-based model of partial agonism.

    Topics: Alanine; Animals; Cell Line; Crystallography, X-Ray; Electric Conductivity; Electrophysiology; Humans; Ion Channels; Ligands; Models, Biological; Molecular Conformation; Oocytes; Pyrimidinones; Receptors, AMPA; Uracil; Xenopus laevis

2003
Inhibition of willardiine-induced currents through rat GluR6/KA-2 kainate receptor channels by Zinc and other divalent cations.
    Neuroscience letters, 2003, Oct-02, Volume: 349, Issue:2

    Heteromeric GluR6/KA-2 kainate receptor were expressed in HEK293 cells and an inhibition of willardiine-induced currents by cations was studied. Zinc was much more effective than Ca(2+), Ba(2+) and Mg(2+) at 235, 265 and 1382 fold increase in IC(50), respectively. The inhibition was not voltage-dependent. The present data showed that the binding site for the cations are different from that for willardiine and that the currents are inhibited by the cations via at least two distinct binding sites to Zn(2+) and Ca(2+). These data suggest that Zn(2+) play an important role in modulating glutamate receptors at the nervous system because of a presence of Zn(2+) and various effects of Zn(2+) on the receptors.

    Topics: Alanine; Animals; Barium; Binding, Competitive; Calcium; Cations, Divalent; Cell Line, Transformed; Dose-Response Relationship, Drug; GluK2 Kainate Receptor; Humans; Magnesium; Membrane Potentials; Patch-Clamp Techniques; Pyrimidinones; Rats; Receptors, Kainic Acid; Uracil; Zinc

2003
The novel antagonist 3-CBW discriminates between kainate receptors expressed on neonatal rat motoneurones and those on dorsal root C-fibres.
    British journal of pharmacology, 2002, Volume: 137, Issue:7

    1. The natural product willardiine is a selective AMPA receptor agonist. We report that an N(3)-substituted analogue of willardiine, (S)-3-(4-carboxybenzyl)willardiine 3-CBW, antagonizes AMPA and kainate receptors expressed on motoneurones and dorsal root C-fibres, respectively. 2. Reduction of the fast component of the dorsal root-evoked ventral root potential (fDR-VRP) has been used as a novel method to compare AMPA receptor antagonists. 3-CBW, NBQX and GYKI53655 depressed the fDR-VRP with IC(50) values of 10.3+/-2.4, 0.214+/-0.043 and 4.03+/-0.31 micro M, respectively. That 3-CBW depressed the fDR-VRP by acting at AMPA and not metabotropic glutamate receptors was demonstrated by the lack of effect of LY341495 (100 micro M). 3. The Schild plot for antagonism of responses to (S)-5-fluorowillardiine on motoneurones by 3-CBW had a slope of 1.11+/-0.13 giving a pA(2) value of 4.48. The Schild plot for antagonism of kainate responses on the dorsal root by 3-CBW had a slope of 1.05+/-0.05 giving a pA(2) value of 4.96. 4. On neonatal rat motoneurones 3-CBW (200 micro M) almost completely abolished responses to AMPA while responses to NMDA, kainate and DHPG were 101.6+/-11.6%, 39.4+/-5.8% and 110.5+/-9.0% of control, respectively. 3-CBW can therefore be used to isolate kainate receptor responses from those mediated by AMPA receptors. 5 3-CBW antagonized kainate-induced responses on dorsal root C-fibres with a pA(2) value of 4.96 whereas kainate receptor mediated responses (isolated by including GYKI53655 in the medium) on motoneurones were not completely blocked by 200 micro M 3-CBW, substantiating evidence that kainate receptors on neonatal rat motoneurones differ from those on dorsal root C-fibres.

    Topics: Alanine; Animals; Animals, Newborn; Benzodiazepines; Benzyl Compounds; Dose-Response Relationship, Drug; Evoked Potentials; Excitatory Amino Acid Antagonists; Motor Neurons; Nerve Fibers; Pyrimidinones; Quinoxalines; Rats; Receptors, AMPA; Receptors, Kainic Acid; Spinal Nerve Roots; Time Factors; Uracil

2002
Calcium inhibits willardiine-induced responses in kainate receptor GluR6(Q)/KA-2.
    Neuroreport, 2001, Jan-22, Volume: 12, Issue:1

    A number of studies have demonstrated that willardiine [(S)-1-(2-amino-2-carboxyethyl) pyrimidine-2,4-dione] is a useful agonist for the activation of AMPA/kainate receptors. Here we examine the effect of extracellular calcium on currents evoked by willardiine in HEK 293 cells expressing the GluR6(Q)/KA-2 kainate receptor subunits. At a concentration of 1.8 mM, Ca2+ inhibited the currents induced by 100 microM willardiine by approximately 50%. When extracellular Na+ ions were replaced with Ca2+ ions there were no measurable inward currents. We conclude that Ca2+ inhibition of the willardiine-induced response is concentration dependent.

    Topics: Alanine; Calcium Chloride; Cells, Cultured; GluK2 Kainate Receptor; Humans; Kidney; Membrane Potentials; Pyrimidinones; Receptors, Kainic Acid; Uracil

2001
Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466.
    Molecular pharmacology, 2000, Volume: 58, Issue:4

    R,S-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor up-modulators of the benzamide type ("ampakines") have previously been shown to enhance excitatory synaptic transmission in vivo and in vitro and AMPA receptor currents in excised patches. The present study analyzed the effects of an ampakine (CX614; 2H,3H, 6aH-pyrrolidino[2",1"-3',2']1,3-oxazino[6',5'-5,4]benz o[e]1, 4-dioxan-10-one) that belongs to a benzoxazine subgroup characterized by greater structural rigidity and higher potency. CX614 enhanced the size (amplitude and duration) of field excitatory postsynaptic potentials in hippocampal slices and autaptically evoked excitatory postsynaptic currents in neuronal cultures with EC(50) values of 20 to 40 microM. The compound blocked desensitization (EC(50) = 44 microM) and slowed deactivation of responses to glutamate by a factor of 8.4 in excised patches. Currents through homomeric, recombinant AMPA receptors were enhanced with EC(50) values that did not differ greatly across GluR1-3 flop subunits (19-37 microM) but revealed slightly lower potency at corresponding flip variants. Competition experiments using modulation of [(3)H]fluorowillardiine binding suggested that CX614 and cyclothiazide share a common binding site but cyclothiazide seems to bind to an additional site not recognized by the ampakine. CX614 did not reverse the effect of GYKI 52466 on responses to brief glutamate pulses, which indicates that they act through separate sites, a conclusion that was confirmed in binding experiments. In sum, these results extend prior evidence that ampakines are effective in enhancing synaptic responses, most likely by slowing deactivation, and that their effects are exerted through sites that are only in part shared with other modulators.

    Topics: Alanine; Animals; Anti-Anxiety Agents; Benzodiazepines; Benzothiadiazines; Cells, Cultured; Diuretics; Drug Interactions; Electrophysiology; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Hippocampus; Humans; In Vitro Techniques; Male; Oxazines; Pyrimidinones; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Recombinant Proteins; Sodium Chloride Symporter Inhibitors; Tritium; Uracil

2000
Mutant cycle analysis of the active and desensitized states of an AMPA receptor induced by willardiines.
    Biochemistry, 2000, Oct-24, Volume: 39, Issue:42

    The halogenated willardiines are agonists at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of glutamate receptors. Although they differ only by the nature of the halogen substituent, they display marked differences in their efficacy to activate the receptor channel opening and in causing desensitization. We have studied the origin of the different agonist properties of the willardiines and in particular the nature of the structural element within the receptor binding domain that is able to distinguish between willardiines at a subatomic resolution of 0.6 A (the difference in radius between F and Br) and allow (S)-5-fluorowillardiine to cause receptor desensitization much more than (S)-5-bromowillardiine. For this purpose, we analyzed, with the thermodynamic mutant cycle method, the active and desensitized states induced by the willardiines in the GluR1 subtype of AMPA receptors and GluR1 mutants in which residues E398, Y446, L646, and S650, within the agonist binding domain, were mutated. The results were used to generate a 3D model of the willardiine docking mode. We suggest that the active and desensitized states of the AMPA-R correspond, respectively, to the open-lobe and closed-lobe conformations of the agonist binding domain.

    Topics: Alanine; Animals; Anura; Benzothiadiazines; Binding Sites; Dose-Response Relationship, Drug; Ion Channel Gating; Ligands; Models, Molecular; Mutagenesis, Site-Directed; Oocytes; Patch-Clamp Techniques; Protein Structure, Tertiary; Pyrimidinones; Receptors, AMPA; Uracil

2000
Interference of S-nitrosoglutathione with the binding of ligands to ionotropic glutamate receptors in pig cerebral cortical synaptic membranes.
    Neurochemical research, 2000, Volume: 25, Issue:8

    The interactions of S-nitrosoglutathione (GSNO) with the ionotropic glutamate receptors were studied on synaptic membranes isolated from the pig cerebral cortex. GSNO displaced the binding of [3H]glutamate, 3-[(R)-2-carboxypiperazin-4-yl] [3H]propyl-1-phosphonate ([3H]CPP), a competitive N-methyl-D-aspartate (NMDA) antagonist, and [3H]kainate, with IC50 values in the low micromolar range. It failed to displace (S)-5-fluoro-[3H]willardiine, a selective agonist of 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Reduced and oxidized glutathione were almost as effective as GSNO in glutamate and CPP binding. Of the three, GSNO was the most potent in kainate binding. They all stimulated [3H]dizocilpine binding in a concentration-dependent manner. This effect was additive to that of glycine and not mimicked by NO donors such as S-nitroso-N-acetylpenicillamine, 5-amino-3-morpholinyl-1,2,3-oxadiazolium chloride (SIN-1) and nitroglycerin. We assume that GSNO may act as an endogenous ligand at the NMDA and non-NMDA classes of glutamate receptors. In this manner it may facilitate NO transfer and target its delivery to specific sites in these receptors.

    Topics: Alanine; Animals; Binding, Competitive; Cerebral Cortex; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glutathione; Kainic Acid; Kinetics; Ligands; Neuroprotective Agents; Nitroso Compounds; Piperazines; Pyrimidinones; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; S-Nitrosoglutathione; Swine; Synaptic Membranes; Uracil

2000
Synthesis of willardiine and 6-azawillardiine analogs: pharmacological characterization on cloned homomeric human AMPA and kainate receptor subtypes.
    Journal of medicinal chemistry, 1997, Oct-24, Volume: 40, Issue:22

    Both willardiine and azawillardiine analogs (18-28) have been reported to be potent and selective agonists for either AMPA or kainate receptors. We report here the novel synthesis and pharmacological characterization of a range of willardiine (18-23) and 6-azawillardiine (24-28) analogs on cells individually expressing human homomeric hGluR1, hGluR2, hGluR4, or hGluR5 receptors. Reaction of the sodium salts of substituted uracils (7-12) or 6-azauracils (13-16) with (S)-3-[(tert-butoxycarbonyl)amino]oxetan-2-one (17) in dry DMF, subsequent deprotection in TFA, and purification by ion-exchange chromatography gave mainly the willardiine analog in which alkylation took place on N1 of the uracil ring. We have investigated the subtype selectivity of these compounds by examining their binding affinity for homomeric hGluR1, -2, -4, or -5 (and hGluR6 in the case of 5-iodowillardiine (22)). From this study we have demonstrated that 22 has high affinity for hGluR5 and, compared to kainate, displays excellent selectivity for this receptor over both the AMPA receptor subtypes and the homomeric kainate receptor, hGluR6. 5-Fluorowillardiine (19) has higher affinity than AMPA for both homomeric hGluR1 and hGluR2 and compared to AMPA displays greater selectivity for AMPA receptor subtypes over the kainate receptor, hGluR5. Some structural features required for optimal activity at homomeric AMPA or kainate receptor subtypes have also been identified. It would appear that quite large lipophilic substituents at the 5-position of the uracil ring not only are accommodated by hGluR5 receptors but also lead to enhanced affinity for these receptors. In contrast to this, for optimal binding affinity to hGluR1, -2, or -4, smaller, electron-withdrawing substituents are required. For optimal activity at hGluR4 receptors a 6-aza-substituted willardiine is favored. The subtype-selective compounds described here are likely to be useful tools to probe the distribution and the physiological roles of the various glutamate receptor subunits in the central nervous system.

    Topics: Alanine; Cell Line; Excitatory Amino Acid Agonists; Humans; Magnetic Resonance Spectroscopy; Molecular Structure; Pyrimidinones; Radioligand Assay; Receptors, AMPA; Receptors, Kainic Acid; Recombinant Proteins; Triazines; Uracil

1997
Localisation and properties of AMPA-insensitive kainate sites: receptor autoradiography and gene expression in rat brain.
    Neuroscience letters, 1996, Feb-02, Volume: 204, Issue:1-2

    Kainic acid (KA)-sensitive glutamate sites have been investigated by receptor autoradiography and in situ hybridisation histochemistry (ISHH) to evaluate their relationship to specific high-affinity KA receptors identified in molecular biological studies. Autoradiography with [3H]KA in the presence of the AMPA-selective antagonist NBQX (1 microM) revealed a widespread distribution of receptors through brain, especially in neocortex, hippocampal CA3, corpus striatum and granule cell layer of cerebellum. Specific binding was insensitive to the AMPA-selective agonist, S-5-fluorowillardiine, but inhibited by kainoids in a manner suggestive of receptor heterogeneity. Expression of the KA-2 receptor subunit mRNA by ISHH was also localised in hippocampal CA3 and cerebellar granule cells, suggesting some high-affinity native KA receptors labelled by [3H]KA were likely to include the KA-2 subunit in their heteromeric assembly.

    Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Autoradiography; Base Sequence; Brain; Brain Chemistry; Excitatory Amino Acid Agonists; Gene Expression Regulation; In Vitro Techniques; Male; Molecular Sequence Data; Pyrimidinones; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Kainic Acid; Uracil

1996
Binding of the new radioligand (S)-[3H]AMPA to rat brain synaptic membranes: effects of a series of structural analogues of the non-NMDA receptor agonist willardiine.
    Neuropharmacology, 1995, Volume: 34, Issue:4

    This study examined the binding of (S)-[3H]AMPA, the radiolabelled active isomer of AMPA, to rat brain synaptic membranes. Under non-chaotropic conditions specific binding of 10 nM (S)-[3H]AMPA represented 33 +/- 2% of the total; this increased to 74 +/- 1% in the presence of 100 mM KSCN. (S)-[3H]AMPA binding was inhibited by non-NMDA receptor agonists and the antagonists NBQX and CNQX, with the following rank order of potency: NBQX > (S)-AMPA > or = quisqualate > CNQX > L-glutamate > domoate > or = kainate > (R)-AMPA. NMDA, and the metabotropic glutamate receptor agonist (1S,3R)-ACPD, up to 100 microM, did not inhibit (S)-[3H]AMPA binding. A number of willardiine analogues all effectively inhibited (S)-[3H]AMPA binding with the rank order of potency: (S)-5-fluorowillardiine > (S)-5-nitrowillardiine > (S)-5-trifluoromethylwillardiine > (S)-5-bromowillardiine approximately (S)-5-chlorowillardiine > (S)-5-cyanowillardiine > (S)-willardiine > (S)-5-iodowillardiine > (S)-6-methylwillardiine > (S)-5-methylwillardiine. This rank order closely reflects data from equilibrium measurements made, under voltage clamp, on cultured hippocampal neurons. In contrast the respective (R)-enantiomers and the racemate mixtures of (R,S)-3, 5 and 6-isowillardiine were relatively inactive. Similar IC50 values and thus rank orders of potency for the willardiines were observed in the presence of 100 mM KSCN.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain; Cycloleucine; Male; Pyrimidinones; Quinoxalines; Radioligand Assay; Rats; Rats, Wistar; Receptors, AMPA; Stereoisomerism; Synaptic Membranes; Tritium; Uracil

1995
Willardiines differentiate agonist binding sites for kainate- versus AMPA-preferring glutamate receptors in DRG and hippocampal neurons.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1994, Volume: 14, Issue:6

    Concentration jump responses to 5-substituted (S)-willardiines were recorded from dorsal root ganglion (DRG) and hippocampal neurons under voltage clamp. After block of desensitization by concanavalin-A, dose-response analysis for activation of kainate-preferring receptors in DRG neurons gave the potency sequence trifluoromethyl > iodo > bromo approximately chloro > nitro approximately cyano > kainate > methyl > fluoro > (R,S)-AMPA >> willardiine; EC50 values for the most and least potent willardiine derivatives, 5-trifluoromethyl (70 nM) and 5-fluoro (69 microM), differed 1000-fold. The potency sequence for equilibrium responses at AMPA-preferring receptors in hippocampal neurons was strikingly different from that obtained in DRG neurons: fluoro > cyano approximately trifluoromethyl approximately nitro > chloro approximately bromo > (R,S)-AMPA > iodo > willardiine > kainate > methyl. In hippocampal neurons EC50 values for the most and least potent willardiine derivatives, 5-fluoro (1.5 microM) and 5-methyl (251 microM), differed only 170-fold. Consistent with equilibrium potency measurements, in DRG neurons the kinetics of deactivation for willardiines, recorded following a return to agonist-free solution, were rapid for 5-fluoro (tau off = 43 msec) but slow for 5-iodo (tau off = 4.2 sec), while the opposite sequence was observed for hippocampal neurons, slow for 5-fluoro (tau off = 2.1 sec) and rapid for 5-iodo (tau off = 188 msec). The kinetics of recovery from desensitization showed comparable agonist- and cell-dependent differences. Structure-activity analysis for agonist responses recorded from DRG and hippocampal neurons suggests that for both kainate-preferring and AMPA-preferring receptors the binding of willardiines involves interactions with polar groups such that potency is related to ionization of the uracil ring, and hence the electron-withdrawing ability of the 5-position substituent. However, kainate-preferring receptors differ from AMPA-preferring receptors in possessing a lipophilic pocket that further enhances agonist potency by hydrophobic bonding of the 5-substituent. In contrast, AMPA-preferring receptors lack such a lipophilic site, and for 5-position substituents of the same electron-withdrawing ability, potency decreases with increase in size.

    Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Animals, Newborn; Binding Sites; Dose-Response Relationship, Drug; Ganglia, Spinal; Hippocampus; Kainic Acid; Kinetics; Neurons; Pyrimidinones; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Time Factors; Uracil

1994
Thiocyanate ions selectively antagonize AMPA-evoked responses in Xenopus laevis oocytes microinjected with rat brain mRNA.
    British journal of pharmacology, 1993, Volume: 109, Issue:3

    1 Responses to kainate (KA), willardiine and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were recorded from rat brain mRNA-injected Xenopus laevis oocytes by use of a two-electrode voltage clamp. 2 Thiocyanate (SCN-; 50 microM-4 mM) ions reversibly and selectively inhibited the membrane current responses to AMPA in a non-competitive manner without affecting KA or willardiine-induced responses. 3 The inhibition of AMPA-induced responses by SCN- was dependent on the SCN- concentration with an estimated IC50 of 1 mM. The antagonism was not dependent on the AMPA concentration. 4 The response to a high concentration of AMPA (100-200 microM) exhibited a peak inward current which declined to a steady-state. SCN- inhibited the steady-state current more than the peak response. The inhibition was unaffected by prior incubation with concanavalin-A (Con-A; 10 microM). 5 Responses to KA were antagonized by AMPA in a competitive manner, suggesting that both agonists may activate a common receptor-channel complex. This interaction between two non-NMDA agonists was not affected by the SCN(-)-induced inhibition of the AMPA response. 6 AMPA-induced responses recorded from large cultured cerebellar neurones by whole-cell recording were also inhibited by SCN- in a non-competitive manner. The AMPA-induced peak current was less affected than the steady-state response. 7 We conclude that SCN- can inhibit the response to AMPA in expressed non-NMDA receptors in Xenopus oocytes and also in native receptors in cultured cerebellar neurones. One possible mechanism of action for SCN- inhibition of responses to AMPA may involve a Con-A-insensitive, non-NMDA receptor-mediated desensitization.

    Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain Chemistry; Cell Membrane; Cerebellum; Electrophysiology; Female; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Microinjections; Neurons; Oocytes; Pregnancy; Pyrimidinones; Rats; Receptors, N-Methyl-D-Aspartate; RNA, Messenger; Thiocyanates; Uracil; Xenopus laevis

1993
Activation and desensitization of AMPA/kainate receptors by novel derivatives of willardiine.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1992, Volume: 12, Issue:2

    Willardiine [(S)-1-(2-amino-2-carboxyethyl)pyrimidine-2,4-dione] is a naturally occurring heterocyclic excitatory amino acid present in the seeds of Acacia and Mimosa. A series of 5-substituted willardiines were synthesized in single enantiomeric forms and tested for activity at AMPA/kainate receptors, using whole-cell recording from mouse embryonic hippocampal neurons. The (S)- but not (R)-isomers of willardiine and 5-bromowillardiine were potent agonists, producing rapidly but incompletely desensitizing responses. At equilibrium, (S)-5-fluorowillardiine (EC50, 1.5 microM) was seven times more potent than (R,S)-AMPA (EC50, 11 microM) and 30 times more potent than willardiine (EC50, 45 microM); the potency sequence was fluoro greater than nitro greater than chloro approximately bromo greater than iodo greater than willardiine. Willardiines produce strikingly different degrees of desensitization: at saturating doses the equilibrium response to the weakly desensitizing agonist (S)-5-iodowillardiine was similar in amplitude to the response to kainate and 10 times larger than the response to the strongly desensitizing agonist (S)-willardiine. The desensitization sequence was fluoro greater than willardiine greater than nitro approximately chloro greater than bromo greater than iodo greater than kainate. Cross-desensitization experiments confirm that willardiines bind to the same receptors activated by kainate and AMPA, and show that both the rapidly desensitizing and equilibrium responses to willardiines are mediated by the same receptor: (S)-5-iodowillardiine blocked activation of the rapidly desensitizing response evoked by (S)-willardiine and (S)-5-fluorowillardiine, while the latter agonists blocked the equilibrium response to (S)-5-iodowillardiine. A slowly decaying inward tail current was recorded after a brief application of (S)-5-fluorowillardiine but not (S)-willardiine, consistent with a model in which willardiines bind with different affinity to desensitized receptors, such that following removal of agonist, receptors trapped in the desensitized state can return to the open state before dissociation of agonist terminates receptor activation. Willardiines are the first compounds characterized in which simple changes in molecular structure are associated with marked differences in the ability of agonists to produce desensitization of AMPA/kainate receptors.

    Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cells, Cultured; Dose-Response Relationship, Drug; Evoked Potentials; Hippocampus; Ibotenic Acid; Isomerism; Kainic Acid; Kinetics; Mathematics; Mice; Mice, Inbred C57BL; Models, Neurological; Neurons; Pyrimidinones; Receptors, AMPA; Receptors, Kainic Acid; Receptors, Neurotransmitter; Structure-Activity Relationship; Uracil

1992
Effects of bromowillardiine and willardiine on non-N-methyl-D-aspartate receptors in postnatal rat hippocampal neurons.
    Molecular pharmacology, 1991, Volume: 40, Issue:1

    The physiology and pharmacology of willardiine and bromowillardiine, structural analogues of quisqualate, were studied in cultured postnatal rat hippocampal neurons using whole-cell voltage-clamp techniques. These agonists appear to act at a shared non-N-methyl-D-aspartate (non-NMDA) receptor-channel complex and gate nonselective cationic currents. Willardiine currents desensitize rapidly and to a much greater degree than bromowillardiine currents. In addition, the brominated compound produces steady state currents that are 5 times larger than those produced by willardiine at saturation. Bromowillardiine is also a more efficacious excitotoxin, producing about 3-fold greater acute neuronal damage than willardiine at saturating concentrations. These results suggest that agonist structure affects the ability of non-NMDA agonists to induce desensitization and add support to the hypothesis that receptor desensitization serves to limit acute excitotoxicity in cultured neurons.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Alanine; Animals; Cells, Cultured; Dose-Response Relationship, Drug; Hippocampus; Membrane Potentials; Neurons; Pyrimidinones; Quinoxalines; Rats; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Uracil

1991
Biosynthesis of willardiine and isowillardiine in germinating pea seeds and seedlings.
    The Biochemical journal, 1972, Volume: 129, Issue:4

    The synthesis of the pyrimidinyl amino acids willardiine and isowillardiine was studied in vivo and in vitro. Uracil derivatives stimulate the biosynthesis of both compounds; the free base is the most effective. Significant incorporation of [2-(14)C]uracil and [6-(14)C]orotate into willardiine and isowillardiine was found. Incorporation of [6-(14)C]orotate was substantially decreased in the presence of uracil, and to a lesser extent by uridine and UMP. [3-(14)C]Serine was incorporated into the alanine side chain of the two uracilylalanines but not into the ring. The effect of a number of uracil analogues and inhibitors of pyrimidine metabolism was examined. Some were shown to stimulate the biosynthesis; the most noticeable effects were obtained with 6-azauracil and 2-thiouracil. Attempts to obtain extracts capable of synthesizing the uracilylalanines from uracil and serine were unsuccessful, but weak activity was observed when serine was replaced by O-acetylserine.

    Topics: Alanine; Carbon Isotopes; Chromatography, Ion Exchange; Light; Orotic Acid; Pyrimidinones; Seeds; Structure-Activity Relationship; Thiouracil; Uracil

1972