pyrimidinones has been researched along with formamide* in 3 studies
3 other study(ies) available for pyrimidinones and formamide
Article | Year |
---|---|
An iron(II) dependent formamide hydrolase catalyzes the second step in the archaeal biosynthetic pathway to riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin.
The early steps in the biosynthesis of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) and riboflavin in the archaea differ from the established eukaryotic and bacterial pathways. The archaeal pathway has been proposed to begin with an archaeal-specific GTP cyclohydrolase III that hydrolyzes the imidazole ring of GTP but does not remove the resulting formyl group from the formamide [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074-15084 ]. This enzyme is different than the bacterial GTP cyclohydrolase II which catalyzes both reactions. Here we describe the identification and characterization of the formamide hydrolase that catalyzes the second step in the archaeal Fo and riboflavin biosynthetic pathway. The Methanocaldococcus jannaschii MJ0116 gene was cloned and heterologously expressed, and the resulting enzyme was shown to catalyze the formation of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (APy) and formate from 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-monophosphate (FAPy). The MJ0116-derived protein has been named ArfB to indicate that it catalyzes the second step in archaeal riboflavin and Fo biosynthesis. ArfB was found to require ferrous iron for activity although metal analysis by ICP indicated the presence of zinc as well as iron in the purified protein. The identification of this enzyme confirms the involvement of GTP cyclohydrolase III (ArfA) in archaeal riboflavin and Fo biosynthesis. Topics: Amino Acid Sequence; Archaeal Proteins; Biosynthetic Pathways; Catalysis; Formamides; GTP Cyclohydrolase; Guanosine Triphosphate; Hydrogen-Ion Concentration; Hydrolysis; Iron; Kinetics; Methanococcaceae; Models, Biological; Molecular Sequence Data; Molecular Structure; Pyrimidinones; Riboflavin; Sequence Homology, Amino Acid | 2009 |
Preferential solvation of Brooker's merocyanine in binary solvent mixtures composed of formamides and hydroxylic solvents.
The ET polarity values of 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (Brooker's merocyanine) were collected in mixed-solvent systems comprising a formamide [N,N-dimethylformamide (DMF), N-methylformamide (NMF) or formamide (FA)] and a hydroxylic (water, methanol, ethanol, propan-2-ol or butan-1-ol) solvent. Binary mixtures involving DMF and the other formamides (NMF and FA) as well as NMF and FA were also studied. These data were employed in the investigation of the preferential solvation (PS) of the probe. Each solvent system was analyzed in terms of both solute-solvent and solvent-solvent interactions. These latter interactions were responsible for the synergism observed in many binary mixtures. This synergistic behaviour was observed for DMF-propan-2-ol, DMF-butan-1-ol, FA-methanol, FA-ethanol and for the mixtures of the alcohols with NMF. All data were successfully fitted to a model based on solvent-exchange equilibria, which allowed the separation of the different contributions of the solvent species in the solvation shell of the dye. The results suggest that both hydrogen bonding and solvophobic interactions contribute to the formation of the solvent complexes responsible for the observed synergistic effects in the PS of the dye. Topics: 1-Butanol; 1-Propanol; Amides; Dimethylformamide; Formamides; Hydrogen Bonding; Hydrolysis; Methanol; Models, Chemical; Photosensitizing Agents; Pyrimidinones; Solvents; Spectrophotometry; Temperature; Water | 2004 |
A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life.
The synthesis of prebiotic molecules is a major problem in chemical evolution as well as in any origin-of-life theory. We report here a plausible new prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide under catalytic conditions. In the presence of CaCO(3) and different inorganic oxides, namely silica, alumine, kaolin, and zeolite (Y type), neat formamide undergoes the formation of purine, adenine, cytosine, and 4(3H)-pyrimidinone, from acceptable to good yields. The role of catalysts showed to be not limited to the improvement of the yield but it is also relevant in providing a high selectivity in the products distribution. Topics: Catalysis; Cytosine; Evolution, Chemical; Formamides; Origin of Life; Purines; Pyrimidinones | 2001 |